Ag2S and MoS2 as dual, co-catalysts for enhanced photocatalytic degradation of organic pollutions over CdS
详细信息    查看全文
  • 作者:Ying Wang ; Mingxuan Sun ; Yalin Fang ; Shanfu Sun ; Jia He
  • 刊名:Journal of Materials Science
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:51
  • 期:2
  • 页码:779-787
  • 全文大小:1,218 KB
  • 参考文献:1.Yang MQ, Zhang N, Pagliaro M et al (2014) Artificial photosynthesis over graphene-semiconductor composites. Are we getting better? Chem Soc Rev 43:8240鈥?254CrossRef
    2.Zhang N, Zhang YH, Xu YJ (2012) Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale 4:5792鈥?813CrossRef
    3.Han C, Yang MQ, Xu YJ et al (2014) Improving the photocatalytic activity and anti-photocorrosion of semiconductor ZnO by coupling with versatile carbon. Phys Chem Chem Phys 16:16891鈥?6903CrossRef
    4.Zhang YH, Tang ZR, Xu YJ et al (2010) TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials? ACS Nano 4:7303鈥?314CrossRef
    5.Wang HL, Zhang LS, Chen ZG et al (2014) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev 43:5234鈥?244CrossRef
    6.Li Z, Yu LB, Liu YB et al (2014) Enhanced photovoltaic performance of solar cell based on front-side illuminated CdSe/CdS double-sensitized TiO2 nanotube arrays electrode. J Mater Sci 49:6392鈥?403. doi:10.鈥?007/鈥媠10853-014-8366-1 CrossRef
    7.Sun MX, Li WB, Sun SF et al (2015) One-step in situ synthesis of graphene-TiO2 nanorod hybrid composites with enhanced photocatalytic activity. Mater Res Bull 61:280鈥?86CrossRef
    8.Han SC, Hu LF, Fang XS et al (2014) Efficient self-assembly synthesis of uniform CdS spherical nanoparticles-Au nanoparticles hybrids with enhanced photoactivity. Adv Funct Mater 24:3725鈥?733CrossRef
    9.Liu S, Yang MQ, Tang ZR et al (2014) A nanotree-like CdS/ZnO nanocomposite with spatially branched hierarchical structure for photocatalytic fine-chemical synthesis. Nanoscale 6:7193鈥?198CrossRef
    10.Zong X, Wu GP, Li C et al (2010) Photocatalytic H2 evolution on MoS2/CdS catalysts under visible light irradiation. J Phys Chem C 14:1963鈥?968CrossRef
    11.Fang XS, Wu LM, Hu LF (2011) ZnS nanostructure arrays: a developing material star. Adv Mater 23:585鈥?98CrossRef
    12.Li Y, Chen G, Zhou C et al (2009) A simple template-free synthesis of nanoporous ZnS-In2S3-Ag2S solid solutions for highly efficient photocatalytic H2 evolution under visible light. Chem Commun 15:2020鈥?022CrossRef
    13.Gao P, Liu J, Sun DD et al (2012) High quality graphene oxide-CdS-Pt nanocomposites for efficient photocatalytic hydrogen evolution. J Mater Chem 22(5):2292鈥?298CrossRef
    14.Guo YM, Wang L, Ma XM et al (2011) Optical and photocatalytic properties of arginine-stabilized cadmium sulfide quantum dots. Mater Lett 65(3):486鈥?89CrossRef
    15.Wu CC, Wei L, Chen YX et al (2014) ZnO nanosheet arrays constructed on weaved titanium wire for CdS-sensitized solar cells. Nanoscale Res Lett 9:112CrossRef
    16.Meissner D, Memming R, Kastening B (1988) Photoelectrochemistry of cadmium sulfide reanalysis of photocorrosion and flat-band potential. J Phys Chem 92(12):3476鈥?483CrossRef
    17.Chen YB, Wang LZ, Lu GQ et al (2011) Nanoparticles enwrapped with nanotubes: a unique architecture of CdS/titanate nanotubes for efficient photocatalytic hydrogen production from water. J Mater Chem 21(13):5134鈥?141CrossRef
    18.Ye M, Gong J, Lai Y et al (2012) High efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots sensitized TiO2 nanotube arrays. J Am Chem Soc 134:15720CrossRef
    19.Park H, Kim YK, Choi W (2011) Reversing CdS preparation order and its effects on photocatalytic hydrogen production of CdS/Pt-TiO2 hybrids under visible light. J Phys Chem C 115:6141鈥?148CrossRef
    20.Chen WT, Yang TT, Hsu YJ (2008) Au-CdS core-shell nanocrystals with controllable shell thickness and photoinduced charge separation property. Chem Mater 20:7204鈥?206CrossRef
    21.Liu Y, Chic M, Zhang ZX et al (2014) Ag/CdS heterostructural composites: fabrication, characterizations and photocatalysis. Appl Sur Sci 313:558鈥?62CrossRef
    22.Jia TT, Kolpin A, Tsang E et al (2014) A graphene dispersed CdS-MoS2 nanocrystal ensemble for cooperative photocatalytic hydrogen production from water. Chem Commun 50:1185CrossRef
    23.Preethi V, Kanmani S (2014) Photocatalytic hydrogen production using Fe2O3-based core shell nano particles with ZnS and CdS. Int J Hydrogen Energy 39:1613鈥?622CrossRef
    24.Tubtimtae A, Lee MY (2013) Optical and photovoltaic properties of CdS/Ag2S quantum dots cosensitized-solar cells. Mater Sci Forum 761:15鈥?8CrossRef
    25.Ge L, Han C, Xiao X et al (2013) Synthesis and characterization of composite visible light active photocatalysts MoS2-g-C3N4 with enhanced hydrogen evolution activity. Int J Hydrogen Energy 38(17):6960鈥?969CrossRef
    26.Chen GP, Li DM, Luo YH et al (2012) Ball-milling combined calcination synthesis of MoS2/CdS photocatalysts for high photocatalytic H2 evolution activity under visible light irradiation. J Appl Catal A 443鈥?44:138鈥?44CrossRef
    27.Min YL, He GQ, Xu QJ et al (2014) Dual-functional MoS2 sheet-modified CdS branchlike heterostructures with enhanced photostability and photocatalytic activity. J Mater Chem A 2:2578CrossRef
    28.Li YX, Wang H, Peng SQ (2014) Tunable photodeposition of MoS2 onto a composite of reduced graphene oxide and CdS for synergic photocatalytic hydrogen generation. J Phys Chem C 118:19842鈥?9848CrossRef
    29.Zong X, Yan HJ, Li C et al (2008) Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J Am Chem Soc 130:7176鈥?177CrossRef
    30.Hu HW, Ding JN, Yuan NY et al (2013) Photodeposition of Ag2S on TiO2 nanorod arrays for quantum dot-sensitized solar cells. Nanoscale Res Lett 8:10CrossRef
    31.Zamiri R, Ahangar AH, Tobaldi DM (2014) Fabricating and characterising ZnO-ZnS-Ag2S ternary nanostructures with efficient solar-light photocatalytic activity. Phys Chem 16:22418鈥?2425
    32.Xia XH, Zhao XJ, Wang CM (2014) Highly porous Ag-Ag2S/MoS2 with additional active sites synthesized by chemical etching method for enhanced electrocatalytic hydrogen evolution. Electrochim Acta 142:173鈥?81CrossRef
    33.Jagadeesh E, Khan B, Khan SS et al (2015) Toxic potential of iron oxide, CdS/Ag2S composite, CdS and Ag2S NPs on a fresh water alga mougeotiasp. Colloid Surf B 125:284鈥?90CrossRef
    34.Zhong JS, Wang QY, Zhou J (2015) Heterojunction engineering of CdS and Ag2S quantum dots co-sensitized TiO2 nanotube array photoelectrode. J Electrochem Soc 162(1):15鈥?8CrossRef
    35.Munari M, Sturve J, Frenzill G et al (2014) Genotoxic effects of CdS quantum dots and Ag2S nanoparticles in fish cell lines (RTG-2). Mutat Res 775鈥?76:89鈥?3CrossRef
    36.Shen SH, Guo LJ, Chen XB et al (2010) Effect of Ag2S on solar-driven photocatalytic hydrogen evolution of nanostructured CdS. Int J Hydrogen Energy 35:7110鈥?115CrossRef
    37.Sun MX, Fang YL, Wang Y et al (2015) Synthesis of Cu2O/graphene/rutile TiO2 nanorod ternary composites with enhanced photocatalytic activity. J Alloys Compd 650:520鈥?27CrossRef
    38.Bao NZ, Shen LM, Takata T et al (2008) Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chem Mater 20:110鈥?17CrossRef
    39.Sekhar H, Rao DN (2012) Spectroscopic studies on Zn-doped CdS nanopowders prepared by simple coprecipitation method. J Mater Sci 47:1964鈥?971. doi:10.鈥?007/鈥媠10853-011-5991-9 CrossRef
    40.Li YX, Hu YF, Peng SQ et al (2009) Synthesis of CdS nanorods by an ethylenediamine assisted hydrothermal method for photocatalytic hydrogen evolution. J Phys Chem C 113:9352鈥?358CrossRef
    41.Jang JS, Joshi UA, Lee JS (2007) Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production. J Phys Chem C 111:13280鈥?3287CrossRef
    42.Chen Z, Zhang N, Xu YJ (2013) Synthesis of graphene-ZnO nanorod nanocomposites with improved photoactivity and anti-photocorrosion. CrystEngComm 15:3022鈥?030CrossRef
    43.Weng B, Yang MQ, Zhang N et al (2014) Toward the enhanced photoactivity and photostability of ZnO nanospheres via intimate surface coating with reduced graphene oxide. J Mater Chem A 2:9380鈥?389CrossRef
    44.Li YD, Liao HW, Ding Y et al (1999) Solvothermal elemental direct reaction to CdE (E = S, Se, Te) semiconductor nanorod. Inorg Chem 38:1382鈥?387CrossRef
    45.Xu D, Liu ZP, Liang JB et al (2005) Solvothermal synthesis of CdS nanowires in a mixed solvent of ethylenediamine and dodecanethiol. J Phys Chem B 109:14344鈥?4349CrossRef
    46.Liu SQ, Chen Z, Zhang N et al (2013) An efficient self-assembly of CdS nanowires-reduced graphene oxide nanocomposites for selective reduction of nitro organics under visible light irradiation. J Phys Chem C 117:8251鈥?261CrossRef
  • 作者单位:Ying Wang (1)
    Mingxuan Sun (1)
    Yalin Fang (1)
    Shanfu Sun (1)
    Jia He (1)

    1. School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
CdS photocatalysts loaded with Ag2S and MoS2 as dual co-catalysts were prepared via a one-step in situ hydrothermal method using CdCl2路2.5H2O, H2MoO4, AgNO3路9H2O, and CS(NH2)2 as the raw materials. The as-prepared photocatalysts were characterized by X-ray diffraction, scanning electron microscopy, transmission electron micrograph, X-ray photoelectron spectroscopy, photoluminescence spectra, and Ultraviolet鈥揤isible diffuse reflectance spectroscopy (UV鈥揤is DRS). The highest photocatalytic degradation rate was achieved for Ag2S/MoS2/CdS composites (87 %) compared to MoS2/CdS composites (66 %) and CdS (62 %) under visible light illumination for 60 min. The recycled photocatalytic experiments showed that the photocatalytic stability of CdS was improved with the introduction of Ag2S and MoS2. The improved photocatalytic performance of Ag2S/MoS2/CdS composites can be ascribed to the red shift of absorption edge, enhanced light absorption intensity, and the increased separation of the photoinduced electron鈥揾ole pairs, which was attributed to the synergetic effect of MoS2 and Ag2S on CdS. It was proven that Ag2S and MoS2 can act as effective dual co-catalysts to enhance the photocatalytic degradation activity of CdS.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700