A glassy carbon electrode modified with in-situ generated chromium-loaded CdS nanoprobes and heparin for ultrasensitive electrochemiluminescent determination of thrombin
详细信息    查看全文
  • 作者:Qingqing Wen ; Peng Lu ; Peihui Yang
  • 关键词:Chromium ; loaded CdS nanoprobe ; Electrochemiluminescence ; Thrombin ; Heparin ; Polyaniline nanofibers ; Cyclic voltammetry ; Impedance spectroscopy
  • 刊名:Microchimica Acta
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:183
  • 期:1
  • 页码:123-132
  • 全文大小:1,606 KB
  • 参考文献:1.Miao W (2008) Electrogenerated chemiluminescence and its biorelated applications. Chem Rev 108:2506–2553CrossRef
    2.Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544CrossRef
    3.Liu WP, Zhou XM, Xing D (2014) Rapid and reliable microRNA detection by stacking hybridization on electrochemiluminescencet chip system. Biosens Bioelectron 58:388–394CrossRef
    4.Zhou XM, Xing D, Zhu DB, Jia L (2014) Magnetic bead and nanoparticle based electrochemiluminescence amplification assay for direct and sensitive measuring of telomerase activity. Anal Chem 86:255–261
    5.Liao YH, Huang R, Ma ZK, Wu YX, Zhou XM, Xing D (2014) Target-triggered enzyme-free amplification strategy for sensitive detection of microrna in tumor cells and tissues. Anal Chem 86:4596–4604CrossRef
    6.Chen ZH, Liu Y, Wang YZ, Zhao X, Li JH (2013) Dynamic evaluation of cell surface N-glycan expression via an electrogenerated chemiluminescence biosensor based on concanavalin A-integrating gold-nanoparticle-modified Ru (bpy)3 2+-doped silica nanoprobe. Anal Chem 85:4431–4438CrossRef
    7.Chu H, Yan J, Tu Y (2011) Electrochemiluminescent detection of the hybridization of oligonucleotides using an electrode modified with nanocomposite of carbon nanotubes and gold nanoparticles. Microchim Acta 175:209–216CrossRef
    8.Yu C, Yan J, Tu Y (2011) Electrochemiluminescent sensing of dopamine using CdTe quantum dots capped with thioglycolic acid and supported with carbon nanotubes. Microchim Acta 175:347–354CrossRef
    9.Regiart M, Seia MA, Messina GA, Bertolino FA, Raba BJ (2014) Electrochemical immunosensing using a nanostructured functional platform for determination of α-zearalanol. Microchim Acta 182:531–538CrossRef
    10.Shan Y, Xu JJ, Chen HY (2009) distance-dependent quenching and enhancing of electrochemiluminescence from CdS:Mn nanocrystals film by Au nanoparticles for highly sensitive detection of DNA. Chem Commun 905–907
    11.Wang XF, Zhou Y, Xu JJ, Chen HY (2009) Signal-on electrochemiluminescence biosensors based on CdS–carbon nanotube nanocomposite for the sensitive detection of choline and acetylcholine. Adv Funct Mater 19:1444–1450CrossRef
    12.Divsar F, Ju HX (2011) Electrochemiluminescence detection of near single DNA molecules by using quantum dots–dendrimer nanocomposites for signal amplification. Chem Commun 47:9879–9881CrossRef
    13.Dennany L, Gerlach M, O’Carroll S, Keyes TE, Forster RJ, Bertoncello P (2011) Electrochemiluminescence (ECL) sensing properties of water soluble core-shell CdSe/ZnS quantum dots/nafion composite films. J Mater Chem 21:13984–13990CrossRef
    14.Lu YH, Lin WH, Yang CY, Chiu YH, Pu YC, Lee MH, Tseng YC, Hsu YJ (2014) A facilegreen antisolvent approach to Cu2+-doped ZnO nanocrystals with visible-light-responsive photoactivities. Nanoscale 6:8796–8803CrossRef
    15.Li X, Zhang X, Ma H (2014) Cathodic electrochemiluminescence immunosensor based on nanocomposites of semiconductor carboxylated C3N4 and graphene for the ultrasensitive detection of squamous cell carcinoma antigen. Biosens Bioelectron 55:330–336CrossRef
    16.Deng L, Shan Y, Xu JJ, Chen HY (2012) Electrochemiluminescence behaviors of Eu3+-doped CdS nanocrystals film in aqueous solution. Nanoscale 4:831–836CrossRef
    17.Wang J, Shan Y, Zhao WW, Xu JJ, Chen HY (2011) Gold nanoparticle enhanced electrochemiluminescence of CdS thin films for ultrasensitive thrombin detection. Anal Chem 83:4004–4011CrossRef
    18.Siva Kumar K, Divya A, Sreedhara Reddy P (2011) Synthesis and characterization of Cr doped CdS nanoparticles stabilized with polyvinylpyrrolidone. Appl Surf Sci 257:9515–9518CrossRef
    19.Lincot D (2005) Electrodeposition of semiconductors. Thin Solid Films 487:40–48CrossRef
    20.Nishino A, Suzuki M, Ohtani H, Motohashi O, Umezawa K, Nagura H, Yoshimoto T (1993) Thrombin may contribute to the pathophysiology of central nervous system injury. J Neurotrauma 10:167–179CrossRef
    21.Famulok M, Hartig JS, Mayer G (2007) Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev 107:3715–3743CrossRef
    22.Han J, Zhuo Y, Chai YQ, Yuan R (2014) Dual-responses for electrochemical and electrochemiluminescent detection based on a bifunctional probe. Chem Commun 50:3367–3369CrossRef
    23.Jie GF, Yuan JX (2012) Novel magnetic Fe3O4@CdSe composite quantum dot-based electrochemiluminescence detection of thrombin by a multiple DNA cycle amplification strategy. Anal Chem 84:2811–2817CrossRef
    24.Li F, Cui H (2013) A label-free electrochemiluminescence aptasensor for thrombin based on novel assembly strategy of oligonucleotide and luminal functionalized gold nanoparticles. Biosens Bioelectron 39:261–267CrossRef
    25.Sidhu PS, Abdel Aziz MH, Sarkar A, Mehta AY, Zhou QB, Desai UR (2013) Designing allosteric regulators of thrombin. Exosite 2 features multiple subsites that can be targeted by sulfated small molecules for inducing inhibition. J Med Chem 56:5059–5070CrossRef
    26.Huntington JA (2012) Thrombin plasticity. Biochim Biophys Acta 1824:246–252CrossRef
    27.Zhang L, Jiang JH, Luo JJ, Zhang L, Cai JY, Teng JW, Yang PH (2013) A label-free electrochemiluminescence cytosensors for specific detection of early apoptosis. Biosens Bioelectron 49:46–52CrossRef
    28.Yang PH, Gao HY, Cai JY, Chiu JF, Sun HZ, He QY (2005) The stepwise process of chromium-induced DNA breakage: characterization by electrochemistry, atomic force microscopy, and DNA electrophoresis. Chem Res Toxicol 18:1563–1566CrossRef
    29.Shan Y, Xu JJ, Chen HY (2010) Quenching of the electrochemiluminescence of CdS:Mn nanocrystals by CdTe quantum dots and its potential application to quantitative antigen detection. Chem Commun 46:5079–5081CrossRef
    30.Poznyak SK, Talapin DV, Shevchenko EV, Weller H (2004) Quantum dot chemiluminescence. Nano Lett 4:693–698CrossRef
    31.Chen Y, Jiang BY, Xiang Y, Chai YQ, Yuan R (2011) Aptamer-based highly sensitive electrochemiluminescent detection of thrombin viananoparticle layer-by-layer assembled amplification labels. Chem Commun 47:7758–7760CrossRef
    32.Wang XY, Gao A, Lu CC, He XW, Yin XB (2013) An electrochemiluminescence aptasensor for thrombin using graphene oxide to immobilize the aptamer and the intercalated Ru (phen) 3 2+ probe. Biosens Bioelectron 48:120–125CrossRef
    33.Kwon D, Jeong H, Chung BH (2011) Label-free electrochemical detection of human α-thrombin in blood serum using ferrocene-coated gold nanoparticles. Biosens Bioelectron 28:454–458CrossRef
    34.Yin XB, Xin YY, Zhao Y (2009) Label-free electrochemiluminescent aptasensor with attomolar mass detection limits based on a Ru(phen)3 2+-double-strand DNA composite film electrode. Anal Chem 8:9299–9305CrossRef
  • 作者单位:Qingqing Wen (1)
    Peng Lu (1)
    Peihui Yang (1)

    1. Department of Chemistry, Jinan University, Guangzhou, 510632, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Inorganic Chemistry
    Physical Chemistry
    Characterization and Evaluation Materials
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Wien
  • ISSN:1436-5073
文摘
We describe the in-situ electrochemical synthesis of a chromium-loaded CdS nanoprobe (CdS-Cr) for use in ultrasensitive electrochemiluminescence (ECL) detection of thrombin. A glassy carbon electrode was covered with (a) a film of electro-polymerized polyaniline nanofibers (PANI-NF), (b) the in-situ synthesized CdS-Cr nanoprobe, (c) heparin, and (d) a coating of BSA to prevent unspecific adsorption. Atomic force microscopy and scanning electron microscopy images showed the size of nanoprobe to have increased to an average size of 50 ± 5 nm, which was larger than pure CdS nanocrystals (NCs) with their typical size of 10 ± 2 nm. The modified glassy carbon electrode was electrochemically characterized by cyclic voltammetry and impedance spectroscopy. The thrombin-heparin interaction served as a new recognition tool for thrombin and represented an attractive alternative to respective aptamers. About 6-fold enhancement of ECL intensity (compared to pure CdS NCs) was observed in presence of persulfate. This ECL assay has a wide dynamic range (from 10 fM to 100 pM concentrations of thrombin), and a lower detection limit of 6.8 fM at 3σ. The technique for in-situ electrochemical preparation of the nanoprobe is simple, facile, and yields a sensor surface with favorable space structure, positive charge and stability.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700