A high precision visual localization sensor and its working methodology for an indoor mobile robot
详细信息    查看全文
  • 作者:Feng-yu Zhou ; Xian-feng Yuan ; Yang Yang…
  • 关键词:Mobile robot ; Localization sensor ; Visual localization ; Infrared ; reflective marker ; Embedded system
  • 刊名:Frontiers of Information Technology & Electronic Engineering
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:17
  • 期:4
  • 页码:365-374
  • 全文大小:2,105 KB
  • 参考文献:Aleksandrovich, Y.D., Gennadievich, P.G., Stepanovich, K.A., et al., 2013. Mobile robot navigation based on artificial landmarks with machine vision system. World Appl. Sci. J., 24(11):1467–1472.
    Her, K.W., Kim, D.H., Ha, J.E., 2012. Localization of mobile robot using laser range finder and IR landmark. Proc. 12th Int. Conf. on Control, Automation and Systems, p.459–461.
    Kim, Y., Yoon, W.C., 2014. Generating task-oriented interactions of service robots. IEEE Trans. Syst. Man Cybern., 44(8):981–994. http://​dx.​doi.​org/​10.​1109/​TSMC.​2014.​2298214CrossRef
    Kroumov, V., Okuyama, K., 2012. Localisation and position correction for mobile robot using artificial visual landmarks. Int. J. Adv. Mech. Syst., 4(2):112–119. http://​dx.​doi.​org/​10.​1504/​IJAMECHS.​2012.​048395
    Lu, W., Xiang, Z., Liu, J., 2015. Design of an enhanced visual odometry by building and matching compressive panoramic landmarks online. Front. Inform. Technol. Electron. Eng., 16(2):152–165. http://​dx.​doi.​org/​10.​1631/​FITEE.​1400139CrossRef
    Lu, Y., Song, D., 2015. Visual navigation using heterogeneous landmarks and unsupervised geometric constraints. IEEE Trans. Robot., 31(3):736–749. http://​dx.​doi.​org/​10.​1109/​TRO.​2015.​2424032MathSciNet CrossRef
    Luo, R.C., Chen, O., 2013. Wireless and pyroelectric sensory fusion system for indoor human/robot localization and monitoring. IEEE/ASME Trans. Mech., 18(3):845–853. http://​dx.​doi.​org/​10.​1109/​TMECH.​2012.​2188300CrossRef
    Luo, R.C., Lai, C.C., 2014. Multisensor fusion-based concurrent environment mapping and moving object detection for intelligent service robotics. IEEE Trans. Ind. Electron., 61(8):4043–4051. http://​dx.​doi.​org/​10.​1109/​TIE.​2013.​2288199CrossRef
    Müller, J., Burgard, W., 2013. Efficient probabilistic localization for autonomous indoor airships using sonar, air flow, and IMU sensors. Adv. Robot., 27(9):711–724. http://​dx.​doi.​org/​10.​1080/​01691864.​2013.​779005CrossRef
    Nakamura, T., Suzuki, S., 2014. Simplified EKF-SLAM by combining laser range sensor with retro reflective markers for use in kindergarten. Int. J. Robot. Mech., 1(1):1–7.
    Oh, J.H., Kim, D., Lee, B.H., 2014. An indoor localization system for mobile robots using an active infrared positioning sensor. J. Ind. Intell. Inform., 2(1):35–38. http://​dx.​doi.​org/​10.​12720/​jiii.​2.​1.​35-38
    Persson, S.M., Sharf, I., 2014. Sampling-based A* algorithm for robot path-planning. Int. J. Robot. Res., 33(13):1683–1708. http://​dx.​doi.​org/​10.​1177/​0278364914547786​CrossRef
    Reinstein, M., Hoffmann, M., 2013. Dead reckoning in a dynamic quadruped robot based on multimodal proprioceptive sensory information. IEEE Trans. Robot., 29(2):563–571. http://​dx.​doi.​org/​10.​1109/​TRO.​2012.​2228309CrossRef
    Ren, Y., Ye, A., Lu, T., et al., 2014. A method of selflocalization of robot based on infrared landmark. Proc. 11th World Congress on Intelligent Control and Automation, p.5494–5499. http://​dx.​doi.​org/​10.​1109/​WCICA.​2014.​7053654
    Sultan, M.S., Chen, X., Qadeer, N., et al., 2013. Vision guided path planning system for vehicles using infrared landmark. Proc. IEEE Int. Conf. on Robotics and Biomimetics, p.179–184. http://​dx.​doi.​org/​10.​1109/​ROBIO.​2013.​6739455
    Vynnycky, M., Kanev, K., 2015. Mathematical analysis of the multisolution phenomenon in the P3P problem. J. Math. Imag. Vis., 51(2):326–337. http://​dx.​doi.​org/​10.​1007/​s10851-014-0525-0MathSciNet CrossRef MATH
    Wu, H., Tian, G., Duan, P., et al., 2013. The design of a novel artificial label for robot navigation. Proc. Chinese Intelligent Automation Conf., p.479–487. http://​dx.​doi.​org/​10.​1007/​978-3-642-38460-8_​53
    Xu, D., Tan, M., Li, Y., 2011. Visual Measurement and Control for Robots. National Defense Industry Press, Beijing, China, p.132–136 (in Chinese).
    Yu, H.H., Hsieh, H.W., Tasi, Y.K., et al., 2013. Visual localization for mobile robots based on composite map. J. Robot. Mech., 25(1):25–37.
    Yuan, X., Song, M., Zhou, F., et al., 2015. A novel Mittag-Leffler kernel based hybrid fault diagnosis method for wheeled robot driving system. Comput. Intell. Neurosci., 2015:606734.1-606734.11. http://​dx.​doi.​org/​10.​1155/​2015/​606734
    Zhang, Z., 2000. A flexible new technique for camera calibration. IEEE Trans. Patt. Anal. Mach. Intell., 22(11): 1330–1334. http://​dx.​doi.​org/​10.​1109/​34.​888718CrossRef
  • 作者单位:Feng-yu Zhou (1)
    Xian-feng Yuan (1)
    Yang Yang (2)
    Zhi-fei Jiang (1)
    Chen-lei Zhou (1)

    1. School of Control Science and Engineering, Shandong University, Jinan, 250061, China
    2. School of Information Science and Engineering, Shandong University, Jinan, 250100, China
  • 刊物类别:Computer Science, general; Electrical Engineering; Computer Hardware; Computer Systems Organization
  • 刊物主题:Computer Science, general; Electrical Engineering; Computer Hardware; Computer Systems Organization and Communication Networks; Electronics and Microelectronics, Instrumentation; Communications Engine
  • 出版者:Zhejiang University Press
  • ISSN:2095-9230
文摘
To overcome the shortcomings of existing robot localization sensors, such as low accuracy and poor robustness, a high precision visual localization system based on infrared-reflective artificial markers is designed and illustrated in detail in this paper. First, the hardware system of the localization sensor is developed. Secondly, we design a novel kind of infrared-reflective artificial marker whose characteristics can be extracted by the acquisition and processing of the infrared image. In addition, a confidence calculation method for marker identification is proposed to obtain the probabilistic localization results. Finally, the autonomous localization of the robot is achieved by calculating the relative pose relation between the robot and the artificial marker based on the perspective-3-point (P3P) visual localization algorithm. Numerous experiments and practical applications show that the designed localization sensor system is immune to the interferences of the illumination and observation angle changes. The precision of the sensor is ±1.94 cm for position localization and ±1.64◦ for angle localization. Therefore, it satisfies perfectly the requirements of localization precision for an indoor mobile robot.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700