Mitochondrial protein alterations in a familial peripheral neuropathy caused by the V144D amino acid mutation in the sphingolipid protein, SPTLC1
详细信息    查看全文
  • 作者:Scott E. Stimpson (1) (3) (4)
    Jens R. Coorssen (2) (3) (4) (5) (7)
    Simon J. Myers (1) (3) (4) (5) (6)

    1. Neuro-Cell Biology Laboratory
    ; University of Western Sydney ; Penrith ; Australia
    3. Molecular Medicine Research Group
    ; University of Western Sydney ; Penrith ; Australia
    4. School of Science and Health
    ; University of Western Sydney ; Penrith ; Australia
    2. Molecular Physiology
    ; University of Western Sydney ; Penrith ; Australia
    5. School of Medicine
    ; University of Western Sydney ; Locked Bag 1797 ; Penrith ; NSW ; 2751 ; Australia
    7. School of Medicine
    ; University of Western Sydney ; Office 30.2.15 ; Campbelltown campus ; Locked Bag 1797 ; Penrith ; NSW ; 2751 ; Australia
    6. University of Western Sydney
    ; Office 21.1.05 ; Campbelltown campus ; Locked Bag 1797 ; Penrith ; NSW ; 2751 ; Australia
  • 关键词:Hereditary sensory neuropathy type 1 ; Serine palmitoyltransferase long chain subunit 1 ; Mitochondria ; Ubiquinol ; cytochrome c reductase core protein 1
  • 刊名:Journal of Chemical Biology
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:8
  • 期:1
  • 页码:25-35
  • 全文大小:3,552 KB
  • 参考文献:1. Bejaoui K, Wu C, Scheffler MD, Haan G, Ashby P, Wu L, De Jong P, Brown RH Jr (2001) SPTLC1 is mutated in hereditary sensory neuropathy, type 1. Nat Genet 27:261鈥?62 CrossRef
    2. Bozidis P, Williamson CD, Colberg-Poley AM (2007) Isolation of endoplasmic reticulum, mitochondria, and mitochondria-associated membrane fractions from transfected cells and from human cytomegalovirus-infected primary fibroblasts. Curr Protoc Cell Biol. doi:10.1002/0471143030.cb0327s37
    3. Butt RH, Coorssen JR (2005) Postfractionation for enhanced proteomic analyses: routine electrophoretic methods increase the resolution of standard 2D-PAGE. J Proteome Res 4:982鈥?91 CrossRef
    4. Churchward M, Butt RH, Lang J, Hsu K, Coorssen J (2005) Enhanced detergent extraction for analysis of membrane proteomes by two-dimensional gel electrophoresis. Proteome Sci 3:5 CrossRef
    5. Crofts AR (2004) The cytochrome bc1 complex: function in the context of structure. Annu Rev Physiol 66:689鈥?33 CrossRef
    6. Dawkins JL, Hulme DJ, Brahmbhatt SB, Auer-Grumbach M, Nicholson GA (2001) Mutations in SPTLC1, encoding serine palmitoyltransferase, long chain base subunit-1, cause hereditary sensory neuropathy type I. Nat Genet 27:309鈥?12 CrossRef
    7. Dedov V, Dedova I, Merrill A, Nicholson G (2004) Activity of partially inhibited serine palmitoyltransferase is sufficient for normal sphingolipid metabolism and viability of HSN1 patient cells. Biochim Biophys Acta 1688(2):168鈥?75 CrossRef
    8. Drose S, Brandt U, WittigI (2014) Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation. Biochim Biophys Acta 1844(8):1344鈥?354. doi:10.1016/j.bbapap.2014.02.006
    9. Duffy LM, Chapman AL, Shaw PJ, Grierson AJ (2011) Review: the role of mitochondria in the pathogenesis of amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol 37:336鈥?52 CrossRef
    10. Dyck PJ, Thomas PK (2005) Dyck: peripheral neuropathy, 4th edn. Mosby Elsevier, Philadelphia
    11. Gauci VJ, Padula MP, Coorssen JR (2013) Coomassie blue staining for high sensitivity gel-based proteomics. J Proteomics 90:96鈥?06 CrossRef
    12. Hanada K (2003) Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim Biophys Acta 1632:16鈥?0 CrossRef
    13. Hollenbeck PJ, Saxton WM (2005) The axonal transport of mitochondria. J Cell Sci 118:5411鈥?419 CrossRef
    14. Hornemann T, Richard S, Rutti M, Wei Y, Von-Eckardstein A (2006) Cloning and initial characterization of a new subunit for mammalian serine-palmitoyltransferase. J Biol Chem 281(49):37275鈥?7281 CrossRef
    15. Hutchinson AT, Ramsland PA, Jones DR, Agostino M, Lund ME, Jennings CV, Bockhorni V, Yuriev E, Edmundson AB, Raison RL (2010) Free Ig light chains interact with sphingomyelin and are found on the surface of myeloma plasma cells in an aggregated form. J Immunol 185:4179鈥?188 CrossRef
    16. Kindt TJ, Goldsby RA, Osborne BA, Kuby J (2007) Kuby immunology. W.H. Freeman, New York
    17. Kwong JQ, Beal MF, Manfredi G (2006) The role of mitochondria in inherited neurodegenerative diseases. J Neurochem 97:1659鈥?675 CrossRef
    18. Mandon EC, Ehses I, Rother J, Van Echten G, Sandhoff K (1992) Subcellular localization and membrane topology of serine palmitoyltransferase, 3-dehydrosphinganine reductase, and sphinganine N-acyltransferase in mouse liver. J Biol Chem 267:11144鈥?1148
    19. Manfredi G, Beal MF (2000) The role of mitochondria in the pathogenesis of neurodegenerative diseases. Brain Pathol 10:462鈥?72 CrossRef
    20. Marshall LL, Stimpson SE, Hyland RA, Coorssen JR, Myers SJ (2014) Increased lipid droplet accumulation associated with a peripheral sensory neuropathy. J Chem Biol 7:67鈥?6 CrossRef
    21. McCampbell A, Truong D, Broom D, Allchorne A, Gable K, Cutler RG, Mattson M, Woolf C, Frosch M, Harmon J, Dunn T, Brown R (2005) Mutant SPTLC1 dominantly inhibits serine palmitoyltransferase activity in vivo and confers an age-dependent neuropathy. Hum Mol Genet 14(22):3507鈥?521 CrossRef
    22. Miller KE, Sheets MP (2004) Axonal mitochondrial transport and potential are correlated. J Cell Sci 117:2791鈥?804
    23. Myers S, Malladi C, Hyland R, Bautista T, Boadle R, Robinson P, Nicholson G (2014) Mutantions in the / SPTLC1 protein cause mitochondrial structual abnormalisites and endoplasmic reticulum stress in lymphoblasts. DNA Cell Biol 33(7):399鈥?07 CrossRef
    24. Vaseva AV, Moll UM (2013) Identification of p53 in mitochondria. Methods Mol Biol 962:75鈥?4 CrossRef
    25. Verhoeven K, Timmerman V, Mauko B, Pieber TR, De Jonghe P, Auer-Grumbach M (2006) Recent advances in hereditary sensory and autonomic neuropathies. Curr Opin Neurol 19:474鈥?80 CrossRef
    26. Wei J, Yerokun Y, Liepelt M, Momin A, Wang E, Hanada K, Merril AH Jr. (2007) 2鈥? Serine palmitoyltransferase. Sphingolipid Biology. Springer, Japan, p 25鈥?7
    27. Wright EP, Partridge MA, Padula MP, Gauci VJ, Malladi CS, Coorssen JR (2014) Top-down proteomics: enhancing 2D gel electrophoresis from tissue processing to high-sensitivity protein detection. Proteomics 14:872鈥?89 300424" target="_blank" title="It opens in new window">CrossRef
    28. Yamamoto K, Yagi H, Lee YH, Kardos J, Hagihara Y, Naiki H, Goto Y (2010) The amyloid fibrils of the constant domain of immunoglobulin light chain. FEBS Lett 584:3348鈥?353 CrossRef
    29. Yard B, Carter L, Johnson K, Overton I, Dorward M, Liu H, McMahon S, Oke M, Puech D, Barton G, Naismith J, Campopiano D (2007) The structure of serine palmitoyltransferase; gateway to sphingolipid biosynthesis. J Mol Biol 370(5):870鈥?86 CrossRef
    30. Yasuda S, Nishijima M, Hanada K (2003) Localization, topology, and function of the LCB1 subunit of serine palmitoyltransferase in mammalian cells. J Biol Chem 278:4176鈥?183 CrossRef
    31. Zhu Y, Li M, Wang X, Jin H, Liu S, Xu J, Chen Q (2012) Caspase cleavage of cytochrome c1 disrupts mitochondrial function and enhances cytochrome c release. Cell Res 22:127鈥?41 CrossRef
  • 刊物主题:Physical Chemistry; Biophysics and Biological Physics; Cell Biology; Pharmacology/Toxicology; Biochemistry, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1864-6166
文摘
Axonal degeneration is the final common path in many neurological disorders. Subsets of neuropathies involving the sensory neuron are known as hereditary sensory neuropathies (HSNs). Hereditary sensory neuropathy type I (HSN-I) is the most common subtype of HSN with autosomal dominant inheritance. It is characterized by the progressive degeneration of the dorsal root ganglion (DRG) with clinical symptom onset between the second or third decade of life. Heterozygous mutations in the serine palmitoyltransferase (SPT) long chain subunit 1 (SPTLC1) gene were identified as the pathogenic cause of HSN-I. Ultrastructural analysis of mitochondria from HSN-I patient cells has displayed unique morphological abnormalities that are clustered to the perinucleus where they are wrapped by the endoplasmic reticulum (ER). This investigation defines a small subset of proteins with major alterations in abundance in mitochondria harvested from HSN-I mutant SPTLC1 cells. Using mitochondrial protein isolates from control and patient lymphoblasts, and a combination of 2D gel electrophoresis, immunoblotting and mass spectrometry, we have shown the increased abundance of ubiquinol-cytochrome c reductase core protein 1, an electron transport chain protein, as well as the immunoglobulin, Ig kappa chain C. The regulation of these proteins may provide a new route to understanding the cellular and molecular mechanisms underlying HSN-I.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700