Modular Patterns of Phase Desynchronization Networks During a Simple Visuomotor Task
详细信息    查看全文
  • 作者:D. S. Mylonas ; C. I. Siettos ; I. Evdokimidis ; A. C. Papanicolaou…
  • 关键词:MEG ; Functional brain connectivity networks ; Phase ; locking value ; Phase scattering ; Visuomotor response ; Empirical mode decomposition ; Task ; negative networks
  • 刊名:Brain Topography
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:29
  • 期:1
  • 页码:118-129
  • 全文大小:2,683 KB
  • 参考文献:Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 28:9239–9248CrossRef PubMed PubMedCentral
    Bassett DS, Greenfield DL, Meyer-Lindenberg A, Weinberger DR, Moore SW, Bullmore ET (2010) Efficient physical embedding of topologically complex information processing networks in brains and computer circuits. PLoS Comput Biol 6:e1000748CrossRef PubMed PubMedCentral
    Bassett DS, Wymbs NF, Porter MA, Mucha PJ, Carlson JM, Grafton ST (2011) Dynamic reconfiguration of human brain networks during learning. Proc Natl Acad Sci USA 108:7641–7646CrossRef PubMed PubMedCentral
    Boashash B (1992) Estimating and interpreting the instantaneous frequency of a signal-part 1: fundamentals. In: Proceedings of IEEE, pp 520–538
    Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198CrossRef PubMed
    Burgess AP (2012) Towards a unified understanding of event-related changes in the EEG: the firefly model of synchronization through cross-frequency phase modulation. PLoS ONE 7:e45630CrossRef PubMed PubMedCentral
    Chen ZJ, He Y, Rosa-Neto P, Germann J, Evans AC (2008) Revealing modular architecture of human brain structural networks by using cortical thickness from MRI. Cereb Cortex 18:2374–2381CrossRef PubMed PubMedCentral
    Crone NE, Miglioretti DL, Gordon B, Lesser RP (1998) Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain 121:2301–2315CrossRef PubMed
    Crossley NA, Mechelli A, Vértes PE, Toby T, Patel AX, Ginestet CE, Winton-Brown TT (2013) Cognitive relevance of the community structure of the human brain functional coactivation network. Proc Natl Acad Sci USA 110:15502CrossRef
    Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, Halgren E (2000) Dynamic statistical parametric mapping. Neuron 26:55–67CrossRef PubMed
    Damoiseaux JS, Rombouts SARB, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103:13848–13853CrossRef PubMed PubMedCentral
    Dätig M, Schlurmann T (2004) Performance and limitations of the Hilbert-Huang transformation (HHT) with an application to irregular water waves. Ocean Eng 31:1783–1834CrossRef
    Davis FC, Knodt AR, Sporns O, Lahey BB, Zald DH, Brigidi BD, Hariri AR (2013) Impulsivity and the Modular Organization of Resting-State Neural Networks. Cereb Cortex 23:1444–1452CrossRef PubMed PubMedCentral
    De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29:1359–1367CrossRef PubMed
    Di X, Gohel S, Kim EH, Biswal BB (2013) Task vs. Rest - Different network configurations between the coactivation and the resting-state brain networks. Front Hum Neurosci 7:493PubMed PubMedCentral
    Dimitriadis SI, Laskaris NA, Tsirka V, Vourkas M, Micheloyannis S, Fotopoulos S (2010) Tracking brain dynamics via time-dependent network analysis. J Neurosci Methods 193:145–155CrossRef PubMed
    Doesburg SM, Emberson LL, Rahi A, Cameron D, Ward LM (2008a) Asynchrony from synchrony: long-range gamma-band neural synchrony accompanies perception of audiovisual speech asynchrony. Exp Brain Res 185:11–20CrossRef PubMed
    Doesburg SM, Roggeveen AB, Kitajo K, Ward LM (2008b) Large-scale gamma-band phase synchronization and selective attention. Cereb Cortex 18:386–396CrossRef PubMed
    Ferrarini L, Veer IM, Baerends E, van Tol M-J, Renken RJ, van der Wee NJA, Veltman DJ, Aleman A, Zitman FG, Penninx BWJH, van Buchem MA, Reiber JHC, Rombouts SARB, Milles J (2009) Hierarchical functional modularity in the resting-state human brain. Hum Brain Mapp 30:2220–2231CrossRef PubMed
    Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711CrossRef PubMed
    Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102:9673–9678CrossRef PubMed PubMedCentral
    Fox MD, Snyder AZ, Zacks JM, Raichle ME (2006) Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses. Nat Neurosci 9:23–25CrossRef PubMed
    Gaillard R, Dehaene S, Adam C, Clémenceau S, Hasboun D, Baulac M, Cohen L, Naccache L (2009) Converging intracranial markers of conscious access. PLoS Biol 7:e1000061CrossRef PubMedCentral
    Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci USA 99:7821–7826CrossRef PubMed PubMedCentral
    Gross J, Schmitz F, Schnitzler I, Kessler K, Shapiro K, Hommel B, Schnitzler A (2004) Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. Proc Natl Acad Sci USA 101:13050–13055CrossRef PubMed PubMedCentral
    Guimerà R, Sales-Pardo M, Amaral L (2004) Modularity from fluctuations in random graphs and complex networks. Phys Rev E 70:025101CrossRef
    Gusnard DA, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2:685–694CrossRef PubMed
    He Y, Evans A (2010) Graph theoretical modeling of brain connectivity. Curr Opin Neurol 23:341–350PubMed
    He Y, Wang J, Wang L, Chen ZJ, Yan C, Yang H, Tang H, Zhu C, Gong Q, Zang Y, Evans AC (2009) Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS ONE 4:e5226CrossRef PubMed PubMedCentral
    Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen N-C, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc A 454:903–995CrossRef
    Huang NE, Shen Z, Long SR (1999) A new view of nonlinear water waves: the Hilbert spectrum. Annu Rev Fluid Mech 31:417–457CrossRef
    Huang NE, Wu M-LC, Long SR, Shen SSP, Qu W, Gloersen P, Fan KL (2003) A confidence limit for the empirical mode decomposition and Hilbert spectral analysis. Proc R Soc A 459:2317–2345CrossRef
    Jann K, Dierks T, Boesch C, Kottlow M, Strik W, Koenig T (2009) BOLD correlates of EEG alpha phase-locking and the fMRI default mode network. Neuroimage 45:903–916CrossRef PubMed
    Kitzbichler MG, Henson RNA, Smith ML, Nathan PJ, Bullmore ET (2011) Cognitive effort drives workspace configuration of human brain functional networks. J Neurosci 31:8259–8270CrossRef PubMed
    Lachaux J-P, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8:194–208CrossRef PubMed
    Le Van Quyen M, Foucher J, Lachaux J-P, Rodriguez E, Lutz A, Martinerie J, Varela FJ (2001) Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony. J Neurosci Methods 111:83–98CrossRef
    Lopes da Silva FH (2006) Event-related neural activities: what about phase? Prog Brain Res 159:3–17CrossRef PubMed
    Luo J, Bai J, Shao J (2006) Application of the wavelet transforms on axial strain calculation in ultrasound elastography. Prog Nat Sci 16:942–947CrossRef
    Makeig S, Bell AJ, Jung T-P, Sejnowski TJ (1996) Independent component analysis of electroencephalographic data. In: Advances in Neural Information Processing Systems, pp 145–151
    Melloni L, Molina C, Pena M, Torres D, Singer W, Rodriguez E (2007) Synchronization of neural activity across cortical areas correlates with conscious perception. J Neurosci 27:2858–2865CrossRef PubMed
    Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214:655–667CrossRef PubMed PubMedCentral
    Meunier D, Lambiotte R, Bullmore ET (2010) Modular and hierarchically modular organization of brain networks. Front Neurosci 4:200CrossRef PubMed PubMedCentral
    Meyer M, Oort EB, Barth M (2013) Electrophysiological correlation patterns of resting state networks in single subjects: a combined EEG–fMRI study. Brain Topogr 26:98–109CrossRef PubMed PubMedCentral
    Moussa MN, Steen MR, Laurienti PJ, Hayasaka S (2012) Consistency of network modules in resting-state FMRI connectome data. PLoS ONE 7:e44428CrossRef PubMed PubMedCentral
    Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci USA 103:8577–8582CrossRef PubMed PubMedCentral
    Oostenveld R, Fries P, Maris E, Schoffelen J-M (2011) FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011:156869PubMed PubMedCentral
    Palva S, Palva JM (2012) Discovering oscillatory interaction networks with M/EEG: challenges and breakthroughs. Trends Cogn Sci 16:219–230CrossRef PubMed
    Palva JM, Monto S, Kulashekhar S, Palva S (2010) Neuronal synchrony reveals working memory networks and predicts individual memory capacity. Proc Natl Acad Sci USA 107:7580–7585CrossRef PubMed PubMedCentral
    Pfurtscheller G (1981) Central beta rhythm during sensorimotor activities in man. Electroencephalogr Clin Neurophysiol 51:253–264CrossRef PubMed
    Pfurtscheller G, Aranibar A (1977) Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencephalogr Clin Neurophysiol 42:817–826CrossRef PubMed
    Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110:1842–1857CrossRef PubMed
    Pockett S, Bold GEJ, Freeman WJ (2009) EEG synchrony during a perceptual-cognitive task: widespread phase synchrony at all frequencies. Clin Neurophysiol 120:695–708CrossRef PubMed
    Rato RT, Ortigueira MD, Batista AG (2008) On the HHT, its problems, and some solutions. Mech Syst Signal Process 22:1374–1394CrossRef
    Rodriguez E, George N, Lachaux J-P, Martinerie J, Renault B, Varela FJ (1999) Perception’s shadow: long-distance synchronization of human brain activity. Nature 397:430–433CrossRef PubMed
    Roelfsema PR, Engel AK, Konig P, Singer W (1997) Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385:157–161CrossRef PubMed
    Ruan J, Zhang W (2008) Identifying network communities with a high resolution. Phys Rev E 77:016104CrossRef
    Schack B, Weiss S (2005) Quantification of phase synchronization phenomena and their importance for verbal memory processes. Biol Cybern 92:275–287CrossRef PubMed
    Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356CrossRef PubMed PubMedCentral
    Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106:13040–13045CrossRef PubMed PubMedCentral
    Smyrnis N, Mylonas DS, Rezaie R, Siettos CI, Ventouras E, Ktonas PY, Evdokimidis I, Papanicolaou AC (2012) Single-trial magnetoencephalography signals encoded as an unfolding decision process. Neuroimage 59:3604–3610CrossRef PubMed
    Stam CJ, Reijneveld JC (2007) Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys 1:3CrossRef PubMed PubMedCentral
    Stam CJ, Nolte G, Daffertshofer A (2007) Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp 28:1178–1193CrossRef PubMed
    Stefanics G, Jakab A, Bernáth L, Kellényi L, Hernádi I (2004) EEG early evoked gamma-band synchronization reflects object recognition in visual oddball tasks. Brain Topogr 16:261–264CrossRef PubMed
    Tang J, Scellato S, Musolesi M, Mascolo C, Latora V (2010) Small-world behavior in time-varying graphs. Phys Rev E 81:55101CrossRef
    Tass P, Rosenblum MG, Weule J, Kurths J, Pikovsky A, Volkmann J, Schnitzler A, Freund H-J (1998) Detection of n:m phase locking from noisy data: application to magnetoencephalography. Phys Rev Lett 81:3291–3294CrossRef
    Trujillo LT, Peterson MA, Kaszniak AW, Allen JJB (2005) EEG phase synchrony differences across visual perception conditions may depend on recording and analysis methods. Clin Neurophysiol 116:172–189CrossRef PubMed
    Valencia M, Pastor MA, Fernández-Seara MA, Artieda J, Martinerie J, Chavez M (2009) Complex modular structure of large-scale brain networks. Chaos. 19:023119CrossRef PubMed
    Varela F, Lachaux J-P, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239CrossRef PubMed
  • 作者单位:D. S. Mylonas (1) (2)
    C. I. Siettos (1)
    I. Evdokimidis (3)
    A. C. Papanicolaou (4)
    N. Smyrnis (2) (5)

    1. School of Applied Mathematics and Physical Sciences, National Technical University of Athens, 9 Heroon Polytechniou str., 15780, Athens, Greece
    2. Laboratory of Sensorimotor Control, University Mental Health Research Institute, 2 Soranou Efesiou str., 11527, Athens, Greece
    3. Neurology Department, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, 72 V. Sofias Ave., 11528, Athens, Greece
    4. Division of Clinical Neurosciences, Department of Pediatrics, University of Tennessee and Neuroscience Institute, Le Bonheur Hospital, 777 Washington Ave., Memphis, TN, 38105, USA
    5. Psychiatry Department, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, 72 V. Sofias Ave., 11528, Athens, Greece
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Neurosciences
    Psychiatry
    Neurology
  • 出版者:Springer New York
  • ISSN:1573-6792
文摘
By performing sensor-level analysis on magnetoencephalography (MEG) data we identified the dynamic evolution of the functional connectivity networks during a simple visuomotor task. The functional connectivity networks were constructed using the concept of phase-locking value (PLV). We illustrate that the task-related activity is mediated by distinct complex networks related to the PLV desynchronization that configure their architecture dynamically during the task. These networks are prominent at β and α band, and are characterized by coherent modular organization. Moreover the time for the development of the desynchronization networks at α band predicts the intra-subject variability of reaction time. Thus, the spatio-temporal dynamics and the structural properties of the emerged functional networks share common characteristics with the mechanism of coactivation and resting state networks. Keywords MEG Functional brain connectivity networks Phase-locking value Phase scattering Visuomotor response Empirical mode decomposition Task-negative networks

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700