L.U.St: a tool for approximated maximum likelihood supertree reconstruction
详细信息    查看全文
  • 作者:Wasiu A Akanni (1) (2)
    Christopher J Creevey (3)
    Mark Wilkinson (2)
    Davide Pisani (1) (4)

    1. Department of Biology
    ; The National University of Ireland ; Maynooth ; Maynooth ; Kildare ; Ireland
    2. Department of Life Sciences
    ; The Natural History Museum ; London ; SW7 5BD ; UK
    3. Institute of Biological
    ; Environmental and Rural Sciences (IBERS) ; Aberystwyth University ; Aberystwyth ; Ceredigion ; SY23 3FG ; UK
    4. School of Biological Sciences and School of Earth Sciences
    ; The University of Bristol ; Woodland Road ; BS8 1UG ; Bristol ; UK
  • 关键词:Supertrees ; Maximum likelihood ; Phylogenomics ; Tests of two trees
  • 刊名:BMC Bioinformatics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:233 KB
  • 参考文献:1. Semple, C, Steel, M (2000) A supertree method for rooted trees. Discret Appl Math 105: pp. 147-158 CrossRef
    2. Gordon, AD (1986) Consensus supertrees: the synthesis of rooted trees containing overlapping sets of labeled leaves. J Classif 3: pp. 335-348 CrossRef
    3. Aho, AV, Sagiv, Y, Szymanski, TG, Ullman, JD (1981) Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM J Comput 10: pp. 405-421 CrossRef
    4. Purvis, A (1995) A modification to Baum and Ragan鈥檚 method for combining phylogenetic trees. Syst Biol 44: pp. 251-255 CrossRef
    5. Daubin, V, Gouy, M, Perriere, G (2002) A phylogenomic approach to bacterial phylogeny: evidence of a core of genes sharing a common history. Genome Res 12: pp. 1080-1090 CrossRef
    6. Creevey, CJ, Fitzpatrick, DA, Philip, GK, Kinsella, RJ, O鈥機onnell, MJ, Pentony, MM, Travers, SA, Wilkinson, M, McInerney, JO (2004) Does a tree鈥搇ike phylogeny only exist at the tips in the prokaryotes?. Proc R Soc Lond Ser B Biol Sci 271: pp. 2551-2558 CrossRef
    7. Fitzpatrick, DA, Logue, ME, Stajich, JE, Butler, G (2006) A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol Biol 6: pp. 99 CrossRef
    8. Pisani, D, Cotton, JA, McInerney, JO (2007) Supertrees disentangle the chimerical origin of eukaryotic genomes. Mol Biol Evol 24: pp. 1752-1760 CrossRef
    9. Holton, TA, Pisani, D (2010) Deep genomic-scale analyses of the metazoa reject Coelomata: evidence from single-and multigene families analyzed under a supertree and supermatrix paradigm. Genome Biol Evol 2: pp. 310 CrossRef
    10. Baum, BR (1992) Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon 41: pp. 3-10 CrossRef
    11. Ragan, MA (1992) Phylogenetic inference based on matrix representation of trees. Mol Phylogenet Evol 1: pp. 53-58 CrossRef
    12. Wilkinson, M, Cotton, JA, Lapointe, F-J, Pisani, D (2007) Properties of supertree methods in the consensus setting. Syst Biol 56: pp. 330-337 CrossRef
    13. Lapointe, F-J, Wilkinson, M, Bryant, D (2003) Matrix representations with parsimony or with distances: two sides of the same coin?. Syst Biol 52: pp. 865-868
    14. Gatesy, J, Springer, MS A critique of matrix representation with parsimony supertrees. In: Bininda-Emonds, ORP eds. (2004) Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life. Kluwer Academic, Dordrecht, pp. 369-388 CrossRef
    15. Wilkinson, M, Thorley, JL, Pisani, DE, Lapointe, F-J, McInerney, JO Some desiderata for liberal supertrees. In: Bininda-Emonds, ORP eds. (2004) Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life. Kluwer Academic, Dordrecht, pp. 227-246 CrossRef
    16. Cotton, JA, Wilkinson, M (2007) Majority-rule supertrees. Syst Biol 56: pp. 445-452 CrossRef
    17. Steel, M, Rodrigo, A (2008) Maximum likelihood supertrees. Syst Biol 57: pp. 243-250 CrossRef
    18. Bryant, D, Steel, M (2009) Computing the distribution of a tree metric. IEEE/ACM Trans Comput Biol Bioinform 6: pp. 420-426 CrossRef
    19. Akanni, WA (2014) Developing and Applying Supertree methods in Phylogenomics and Macroevolution.
    20. Robinson, D, Foulds, LR (1981) Comparison of phylogenetic trees. Math Biosci 53: pp. 131-147 CrossRef
    21. Kishino, H, Hasegawa, M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29: pp. 170-179 CrossRef
    22. Shimodaira, H, Hasegawa, M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16: pp. 1114-1116 CrossRef
    23. Shimodaira, H (2002) An approximately unbiased test of phylogenetic tree selection. Syst Biol 51: pp. 492-508 CrossRef
    24. Shimodaira, H, Hasegawa, M (2001) CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17: pp. 1246-1247 CrossRef
    25. O鈥橪eary, MA, Bloch, JI, Flynn, JJ, Gaudin, TJ, Giallombardo, A, Giannini, NP, Goldberg, SL, Kraatz, BP, Luo, Z-X, Meng, J (2013) The placental mammal ancestor and the post鈥揔-Pg radiation of placentals. Science 339: pp. 662-667 CrossRef
    26. McCormack, JE, Faircloth, BC, Crawford, NG, Gowaty, PA, Brumfield, RT, Glenn, TC (2012) Ultraconserved elements are novel phylogenomic markers that resolve placental mammal phylogeny when combined with species-tree analysis. Genome Res 22: pp. 746-754 CrossRef
    27. Romiguier, J, Ranwez, V, Delsuc, F, Galtier, N, Douzery, EJ (2013) Less is more in mammalian phylogenomics: AT-rich genes minimize tree conflicts and unravel the root of placental mammals. Mol Biol Evol 30: pp. 2134-2144 CrossRef
    28. Meredith, RW, Jane膷ka, JE, Gatesy, J, Ryder, OA, Fisher, CA, Teeling, EC, Goodbla, A, Eizirik, E, Sim茫o, TL, Stadler, T (2011) Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification. Science 334: pp. 521-524 CrossRef
    29. Song, S, Liu, L, Edwards, SV, Wu, S (2012) Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. Proc Natl Acad Sci 109: pp. 14942-14947 CrossRef
    30. Morgan, CC, Foster, PG, Webb, AE, Pisani, D, McInerney, JO, O鈥機onnell, MJ (2013) Heterogeneous models place the root of the placental mammal phylogeny. Mol Biol Evol 30: pp. 2145-2156 CrossRef
    31. Cao, Y, Fujiwara, M, Nikaido, M, Okada, N, Hasegawa, M (2000) Interordinal relationships and timescale of eutherian evolution as inferred from mitochondrial genome data. Gene 259: pp. 149-158 CrossRef
    32. Corneli, PS, Ward, RH (2000) Mitochondrial genes and mammalian phylogenies: increasing the reliability of branch length estimation. Mol Biol Evol 17: pp. 224-234 CrossRef
    33. Misawa, K, Nei, M (2003) Reanalysis of Murphy et al鈥?s data gives various mammalian phylogenies and suggests overcredibility of Bayesian trees. J Mol Evol 57: pp. S290-S296 CrossRef
    34. Foster, PG, Cox, CJ, Embley, TM (2009) The primary divisions of life: a phylogenomic approach employing composition-heterogeneous methods. Philos Trans R Soc Lond B Biol Sci 364: pp. 2197-2207 CrossRef
    35. Rota-Stabelli, O, Lartillot, N, Philippe, H, Pisani, D (2013) Serine codon-usage bias in deep phylogenomics: pancrustacean relationships as a case study. Syst Biol 62: pp. 121-133 CrossRef
    36. Rota-Stabelli, O, Campbell, L, Brinkmann, H, Edgecombe, GD, Longhorn, SJ, Peterson, KJ, Pisani, D, Philippe, H, Telford, MJ (2011) A congruent solution to arthropod phylogeny: phylogenomics, microRNAs and morphology support monophyletic Mandibulata. Proc R Soc B Biol Sci 278: pp. 298-306 CrossRef
    37. Creevey, CJ, McInerney, JO (2005) Clann: investigating phylogenetic information through supertree analyses. Bioinformatics 21: pp. 390-392 CrossRef
  • 刊物主题:Bioinformatics; Microarrays; Computational Biology/Bioinformatics; Computer Appl. in Life Sciences; Combinatorial Libraries; Algorithms;
  • 出版者:BioMed Central
  • ISSN:1471-2105
文摘
Background Supertrees combine disparate, partially overlapping trees to generate a synthesis that provides a high level perspective that cannot be attained from the inspection of individual phylogenies. Supertrees can be seen as meta-analytical tools that can be used to make inferences based on results of previous scientific studies. Their meta-analytical application has increased in popularity since it was realised that the power of statistical tests for the study of evolutionary trends critically depends on the use of taxon-dense phylogenies. Further to that, supertrees have found applications in phylogenomics where they are used to combine gene trees and recover species phylogenies based on genome-scale data sets. Results Here, we present the L.U.St package, a python tool for approximate maximum likelihood supertree inference and illustrate its application using a genomic data set for the placental mammals. L.U.St allows the calculation of the approximate likelihood of a supertree, given a set of input trees, performs heuristic searches to look for the supertree of highest likelihood, and performs statistical tests of two or more supertrees. To this end, L.U.St implements a winning sites test allowing ranking of a collection of a-priori selected hypotheses, given as a collection of input supertree topologies. It also outputs a file of input-tree-wise likelihood scores that can be used as input to CONSEL for calculation of standard tests of two trees (e.g. Kishino-Hasegawa, Shimidoara-Hasegawa and Approximately Unbiased tests). Conclusion This is the first fully parametric implementation of a supertree method, it has clearly understood properties, and provides several advantages over currently available supertree approaches. It is easy to implement and works on any platform that has python installed. Availability: bitBucket page - https://afro-juju@bitbucket.org/afro-juju/l.u.st.git. Contact: Davide.Pisani@bristol.ac.uk.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700