Silk microfiber-reinforced silk composite scaffolds: fabrication, mechanical properties, and cytocompatibility
详细信息    查看全文
  • 作者:Gang Li ; Fei Li ; Zhaozhu Zheng ; Tingting Luo ; Jian Liu…
  • 刊名:Journal of Materials Science
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:51
  • 期:6
  • 页码:3025-3035
  • 全文大小:1,509 KB
  • 参考文献:1.Gloria A, Ronca D, Russo T et al (2010) Technical features and criteria in designing fiber-reinforced composite materials: from the aerospace and aeronautical field to biomedical applications. J Appl Biomater Biomech 9:151–163
    2.Lewis RV (2006) Spider silk: ancient ideas for new biomaterials. Chem Rev 106:3762–3774CrossRef
    3.Li J, Li Y, Zhang J et al (2015) Nano polypeptide particles reinforced polymer composite fibers. ACS Appl Mater Interfaces 7:3871–3876CrossRef
    4.Xu X, Jayaraman K, Morin C, Pecqueux N (2008) Life cycle assessment of wood-fibre-reinforced polypropylene composites. J Mater Process Technol 198:168–177CrossRef
    5.Shchepelina O, Drachuk I, Gupta MK, Lin J, Tsukruk VV (2011) Silk-on-silk layer-by-layer microcapsules. Adv Mater 23:4655–4660CrossRef
    6.Thwe MM, Liao K (2002) Effects of environmental aging on the mechanical properties of bamboo–glass fiber reinforced polymer matrix hybrid composites. Compos Part A Appl Sci 33:43–52CrossRef
    7.Kharlampieva E, Kozlovskaya V, Gunawidjaja R et al (2010) Flexible silk-inorganic nanocomposites: from transparent to highly reflective. Adv Funct Mater 20:840–846CrossRef
    8.Rizvi GM, Semeralul H (2008) Glass-fiber-reinforced wood/plastic composites. J Vinyl Addit Technol 14:39–42CrossRef
    9.Mandal BB, Park S-H, Gil ES, Kaplan DL (2011) Multilayered silk scaffolds for meniscus tissue engineering. Biomaterials 32:639–651CrossRef
    10.Zhao Z, Li Y, Zhang Y et al (2014) Development of silk fibroin modified poly (l-lactide)–poly (ethylene glycol)–poly (l-lactide) nanoparticles in supercritical CO2. Powder Technol 268:118–125CrossRef
    11.Lu Q, Zhang X, Hu X, Kaplan DL (2010) Green process to prepare silk fibroin/gelatin biomaterial scaffolds. Macromol Biosci 10:289–298CrossRef
    12.Kim HJ, Kim UJ, Leisk GG, Bayan C, Georgakoudi I, Kaplan DL (2007) Bone regeneration on macroporous aqueous-derived silk 3-D scaffolds. Macromol Biosci 7:643–655CrossRef
    13.Zuo B, Dai L, Wu Z (2006) Analysis of structure and properties of biodegradable regenerated silk fibroin fibers. J Mater Sci 41:3357–3361. doi:10.​1007/​s10853-005-5384-z CrossRef
    14.Yang M, Shuai Y, Zhou G, Mandal N, Zhu L, Mao C (2014) Tuning molecular weights of Bombyx mori (B. mori) silk sericin to modify its assembly structures and materials formation. ACS Appl Mater Interfaces 6:13782–13789CrossRef
    15.Tungjitpornkull S, Chaochanchaikul K, Sombatsompop N (2007) Mechanical characterization of E-chopped strand glass fiber reinforced wood/PVC composites. J Thermoplast Compos Mater 20:535–550CrossRef
    16.Omenetto FG, Kaplan DL (2008) A new route for silk. Nat Photonics 2:641–643CrossRef
    17.Jin H-J, Kaplan DL (2003) Mechanism of silk processing in insects and spiders. Nature 424:1057–1061CrossRef
    18.Yuan Q, Yao J, Chen X, Huang L, Shao Z (2010) The preparation of high performance silk fiber/fibroin composite. Polymer 51:4843–4849CrossRef
    19.Pendleton M (2006) Descriptions of melissopalynological methods involving centrifugation should include data for calculating relative centrifugal force (RCF) or should express data in units of RCF or gravities (g). Grana 45:71–72CrossRef
    20.Mandal BB, Grinberg A, Gil ES, Panilaitis B, Kaplan DL (2012) High-strength silk protein scaffolds for bone repair. Proc Natl Acad Sci USA 109:7699–7704CrossRef
    21.Yodmuang S, McNamara SL, Nover AB et al (2015) Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomater 11:27–36CrossRef
    22.Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32:991–1007CrossRef
    23.Li G, Chen Y, Hu J et al (2013) A 5-fluorouracil-loaded polydioxanone weft-knitted stent for the treatment of colorectal cancer. Biomaterials 34:9451–9461CrossRef
    24.Eli N, Oragui E, Khan W (2011) Advances in meniscal tissue engineering. Ortop Traumatol Rehabil 13:319–326CrossRef
    25.Li G, Liu J, Zheng Z, Wang X, Kaplan DL (2015) Structural mimetic silk fiber-reinforced composite scaffolds using multi-angle fibers. Macromol Biosci 15:1125–1133CrossRef
    26.Chao PHG, Yodmuang S, Wang X, Sun L, Kaplan DL, Vunjak-Novakovic G (2010) Silk hydrogel for cartilage tissue engineering. J Biomed Mater Res B 95:84–90CrossRef
    27.Lu S, Wang X, Lu Q et al (2009) Insoluble and flexible silk films containing glycerol. Biomacromolecules 11:143–150CrossRef
    28.Li C, Luo T, Zheng Z, Murphy AR, Wang X, Kaplan DL (2015) Curcumin-functionalized silk materials for enhancing adipogenic differentiation of bone marrow-derived human mesenchymal stem cells. Acta Biomater 11:222–232CrossRef
    29.Jin HJ, Park J, Karageorgiou V et al (2005) Water-stable silk films with reduced β-sheet content. Adv Funct Mater 15:1241–1247CrossRef
    30.Hu X, Shmelev K, Sun L et al (2011) Regulation of silk material structure by temperature-controlled water vapor annealing. Biomacromolecules 12:1686–1696CrossRef
    31.Tissakht M, Ahmed A (1995) Tensile stress-strain characteristics of the human meniscal material. J Biomech 28:411–422CrossRef
    32.Li G, Li Y, Lan P et al (2014) Biodegradable weft-knitted intestinal stents: fabrication and physical changes investigation in vitro degradation. J Biomed Mater Res A 102:982–990CrossRef
    33.Hu X, Kaplan D, Cebe P (2008) Dynamic protein–water relationships during β-sheet formation. Macromolecules 41:3939–3948CrossRef
    34.Yang G, Zhang L, Cao X, Liu Y (2002) Structure and microporous formation of cellulose/silk fibroin blend membranes: part II. Effect of post-treatment by alkali. J Membr Sci 210:379–387CrossRef
    35.Taddei P, Arai T, Boschi A, Monti P, Tsukada M, Freddi G (2006) In vitro study of the proteolytic degradation of Antheraea pernyi silk fibroin. Biomacromolecules 7:259–267CrossRef
    36.Hu X, Lu Q, Kaplan DL, Cebe P (2009) Microphase separation controlled β-sheet crystallization kinetics in fibrous proteins. Macromolecules 42:2079–2087CrossRef
    37.Asha S, Somashekar R, Sanjeev G (2012) Quantification of degradation and surface morphology of NB7 silk fibers irradiated by 8 MeV electron beam using XRD and SEM techniques. Fiber Polym 13:224–230CrossRef
    38.Schäfer-Nolte F, Hennecke K, Reimers K et al (2014) Biomechanics and biocompatibility of woven spider silk meshes during remodeling in a rodent fascia replacement model. Ann Surg 259:781–792CrossRef
    39.Xie RJ, Zhang M (2013) Effect of glycerol on structure and properties of silk fibroin/pearl powder blend films. Adv Mater Res 796:126–131CrossRef
    40.Li G, Li Y, Chen G et al (2015) Silk-based biomaterials in biomedical textiles and fiber-based implants. Adv Healthc Mater 4:1134–1151CrossRef
  • 作者单位:Gang Li (1)
    Fei Li (1)
    Zhaozhu Zheng (1)
    Tingting Luo (1)
    Jian Liu (1)
    Jianbing Wu (1)
    Xiaoqin Wang (1) (2)
    David L. Kaplan (1) (2)

    1. National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People’s Republic of China
    2. Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA, 02155, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
Mechanical reinforcement of silk membranes by embedding silk microfibers was studied. Silk microfibers of 10–600 μm long were prepared by hydrolyzing degummed silk fibers in alkali solution. The silk microfibers were mixed with silk fibroin solution (continuous phase) at various ratios to fabricate silk microfiber-reinforced composite scaffolds (SMCSs). The morphology, mechanical properties, structural characteristics, biodegradation, and cytotoxicity of the composites were investigated. Silk microfiber-reinforced membranes with 1 wt% of microfibers displayed the most homogeneous distribution of microfibers in the membrane matrix. The tensile strength and elongation at break were 10.5 ± 2.7 MPa and 56.7 ± 7.8 %, respectively, comparable to human meniscus tissue. The presence of silk microfibers did not significantly impact the secondary structure and crystallization of SMCSs. Proteolytic degradation in vitro using protease XIV showed that the 1 % silk microfiber-reinforced membranes lost 90 % weight after 5 days, a longer time frame than plain silk membrane controls. The viability of human fibroblasts (Hs 865.Sk) on the SMCSs demonstrated no cytotoxicity. SMCSs may be useful as biomaterial systems as tissue substitutes where mechanical strength is critical for functional performance. Gang Li and Fei Li have contributed to this manuscript equally.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700