Assessment of amendments for the immobilization of Cu in soils containing EDDS leachates
详细信息    查看全文
  • 作者:Li Yang ; Longfei Jiang ; Guiping Wang…
  • 关键词:Amendments ; Leaching ; EDDS ; Copper ; Immobilization ; Bioavailability
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:22
  • 期:21
  • 页码:16525-16534
  • 全文大小:463 KB
  • 参考文献:Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural remediation in environmental cleanup. Geoderma 122:121–142. doi:10.​1016/​j.​geoderma.​2004.​01.​003 CrossRef
    Alvarenga P et al (2008) Assessment of chemical, biochemical and ecotoxicological aspects in a mine soil amended with sludge of either urban or industrial origin. Chemosphere 72:1774–1781. doi:10.​1016/​j.​chemosphere.​2008.​04.​042 CrossRef
    Avery BW, Bascomb CL (1974) Soil survey laboratory methods vol 6. Rothamsted Experimental Station Harpenden, Herts
    Bade R, Oh S, Shin WS (2012) Assessment of metal bioavailability in smelter-contaminated soil before and after lime amendment. Ecotoxicol Environ Saf 80:299–307. doi:10.​1016/​j.​ecoenv.​2012.​03.​019 CrossRef
    Basta NT, Gradwohl R, Snethen KL, Schroder JL (2001) Chemical immobilization of lead, zinc, and cadmium in smelter-contaminated soils using biosolids and rock phosphate. J Environ Qual 30:1222–1230CrossRef
    Beesley L, Moreno-Jimenez E, Gomez-Eyles JL (2010) Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158:2282–2287. doi:10.​1016/​j.​envpol.​2010.​02.​003 CrossRef
    Beesley L, Moreno-Jimenez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159:3269–3282. doi:10.​1016/​j.​envpol.​2011.​07.​023 CrossRef
    Bes C, Mench M (2008) Remediation of copper-contaminated topsoils from a wood treatment facility using in situ stabilisation. Environ Pollut 156:1128–1138. doi:10.​1016/​j.​envpol.​2008.​04.​006 CrossRef
    Cao A, Carucci A, Lai T, La Colla P, Tamburini E (2007) Effect of biodegradable chelating agents on heavy metals phytoextraction with Mirabilis jalapa and on its associated bacteria. Eur J Soil Biol 43:200–206. doi:10.​1016/​j.​ejsobi.​2007.​02.​002 CrossRef
    Chen YH, Li XD, Shen ZG (2004) Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosphere 57:187–196. doi:10.​1016/​j.​chemosphere.​2004.​05.​044 CrossRef
    Chen YH, Wang CC, Wang GP, Luo CL, Mao Y, Shen ZG, Li XD (2008) Heating treatment schemes for enhancing chelant-assisted phytoextraction of heavy metals from contaminated soils. Environ Toxicol Chem 27:888–896. doi:10.​1897/​07-345.​1 CrossRef
    Friesl-Hanl W, Platzer K, Horak O, Gerzabek MH (2009) Immobilising of Cd, Pb, and Zn contaminated arable soils close to a former Pb/Zn smelter: a field study in Austria over 5 years. Environ Geochem Health 31:581–594. doi:10.​1007/​s10653-009-9256-3 CrossRef
    Gadepalle VP, Ouki SK, Van Herwijnen R, Hutchings T (2007) Immobilization of heavy metals in soil using natural and waste materials for vegetation establishment on contaminated sites. Soil Sediment Contam 16:233–251. doi:10.​1080/​1532038060116944​1 CrossRef
    Grcman H, Velikonja-Bolta S, Vodnik D, Kos B, Lestan D (2001) EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant Soil 235:105–114. doi:10.​1023/​A:​1011857303823 CrossRef
    Grcman H, Vodnik D, Velikonja-Bolta S, Lestan D (2003) Ethylenediaminedissuccinate as a new chelate for environmentally safe enhanced: lead phytoextraction. J Environ Qual 32:500–506CrossRef
    Guo GL, Zhou QX, Ma LQ (2006) Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review. Environ Monit Assess 116:513–528. doi:10.​1007/​s10661-006-7668-4 CrossRef
    Hauser L, Tandy S, Schulin R, Nowack B (2005) Column extraction of heavy metals from soils using the biodegradable chelating agent EDDS. Environ Sci Technol 39:6819–6824. doi:10.​1021/​Es050143r CrossRef
    Houben D, Evrard L, Sonnet P (2013) Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 92:1450–1457. doi:10.​1016/​j.​chemosphere.​2013.​03.​055 CrossRef
    Jaworska JS, Schowanek D, Feijtel TCJ (1999) Environmental risk assessment for trisodium [S,S]-ethylene diamine disuccinate, a biodegradable chelator used in detergent applications. Chemosphere 38:3597–3625. doi:10.​1016/​S0045-6535(98)00573-6 CrossRef
    Jiang J, Xu RK (2013) Application of crop straw derived biochars to Cu(II) contaminated Ultisol: evaluating role of alkali and organic functional groups in Cu(II) immobilization. Bioresour Technol 133:537–545. doi:10.​1016/​j.​biortech.​2013.​01.​161 CrossRef
    Jones PW, Williams DR (2001) Chemical speciation used to assess [S,S ′]-ethylenediaminedisuccinic acid (EDDS) as a readily-biodegradable replacement for EDTA in radiochemical decontamination formulations. Appl Radiat Isot 54:587–593. doi:10.​1016/​S0969-8043(00)00297-9 CrossRef
    Karami N, Clemente R, Moreno-Jimenez E, Lepp NW, Beesley L (2011) Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J Hazard Mater 191:41–48. doi:10.​1016/​j.​jhazmat.​2011.​04.​025 CrossRef
    Komarek M, Vanek A, Ettler V (2013) Chemical stabilization of metals and arsenic in contaminated soils using oxides—a review. Environ Pollut 172:9–22. doi:10.​1016/​j.​envpol.​2012.​07.​045 CrossRef
    Kos B, Lestan D (2003) Induced phytoextraction/soil washing of lead using biodegradable chelate and permeable barriers. Environ Sci Technol 37:624–629. doi:10.​1021/​Es0200793 CrossRef
    Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Manage 28:215–225. doi:10.​1016/​j.​wasman.​2006.​12.​012 CrossRef
    Lestan D, Luo CL, Li XD (2008) The use of chelating agents in the remediation of metal-contaminated soils: a review. Environ Pollut 153:3–13. doi:10.​1016/​j.​envpol.​2007.​11.​015 CrossRef
    Lo IMC, Tsang DCW, Yip TCM, Wang F, Zhang WH (2011) Significance of metal exchange in EDDS-flushing column experiments. Chemosphere 83:7–13. doi:10.​1016/​j.​chemosphere.​2011.​01.​040 CrossRef
    Luo CL, Shen ZG, Li XD (2005) Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59:1–11. doi:10.​1016/​j.​chemosphere.​2004.​09.​100 CrossRef
    Luo CL, Shen ZG, Li XD (2008) Hot NTA application enhanced metal phytoextraction from contaminated soil. Water Air Soil Poll 188:127–137. doi:10.​1007/​s11270-007-9529-3 CrossRef
    Luo CL, Shen ZG, Lou LQ, Li XD (2006) EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds. Environ Pollut 144:862–871. doi:10.​1016/​j.​envpol.​2006.​02.​012 CrossRef
    Meers E, Ruttens A, Hopgood MJ, Samson D, Tack FMG (2005) Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere 58:1011–1022. doi:10.​1016/​j.​chemosphere.​2004.​09.​047 CrossRef
    Meers E, Tack FMG, Verloo MG (2008) Degradability of ethylenediaminedisuccinic acid (EDDS) in metal contaminated soils: implications for its use soil remediation. Chemosphere 70:358–363. doi:10.​1016/​j.​chemosphere.​2007.​07.​044 CrossRef
    Nowack B (2002) Environmental chemistry of aminopolycarboxylate chelating agents. Environ Sci Technol 36:4009–4016. doi:10.​1021/​Es025683s CrossRef
    Park JH, Choppala GK, Bolan NS, Chung JW, Chuasavathi T (2011) Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348:439–451. doi:10.​1007/​s11104-011-0948-y CrossRef
    Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Phys 49:643–668. doi:10.​1146/​annurev.​arplant.​49.​1.​643 CrossRef
    Schmidt U (2003) Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. J Environ Qual 32:1939–1954CrossRef
    Schowanek D, Feijtel TCJ, Perkins CM, Hartman FA, Federle TW, Larson RJ (1997) Biodegradation of [S,S], [R,R] and mixed stereoisomers of ethylene diamine disuccinic acid (EDDS), a transition metal chelator. Chemosphere 34:2375–2391. doi:10.​1016/​S0045-6535(97)00082-9 CrossRef
    Shen ZG, Li XD, Wang CC, Chen HM, Chua H (2002) Lead phytoextraction from contaminated soil with high-biomass plant species. J Environ Qual 31:1893–1900CrossRef
    Shi WY, Shao HB, Li H, Shao MA, Du S (2009) Progress in the remediation of hazardous heavy metal-polluted soils by natural zeolite. J Hazard Mater 170:1–6. doi:10.​1016/​j.​jhazmat.​2009.​04.​097 CrossRef
    Tandy S, Ammann A, Schulin R, Nowack B (2006a) Biodegradation and speciation of residual SS-ethylenediaminedisuccinic acid (EDDS) in soil solution left after soil washing. Environ Pollut 142:191–199. doi:10.​1016/​j.​envpol.​2005.​10.​013 CrossRef
    Tandy S, Bossart K, Mueller R, Ritschel J, Hauser L, Schulin R, Nowack B (2004) Extraction of heavy metals from soils using biodegradable chelating agents. Environ Sci Technol 38:937–944. doi:10.​1021/​Es0348750 CrossRef
    Tandy S, Schulin R, Nowack B (2006b) Uptake of metals during chelant-assisted phytoextraction with EDDS related to the solubilized metal concentration. Environ Sci Technol 40:2753–2758. doi:10.​1021/​Es052141c CrossRef
    Uchimiya M, Lima IM, Klasson KT, Chang SC, Wartelle LH, Rodgers JE (2010) Immobilization of heavy metal ions (Cu-II, Cd-II, Ni-II, and Pb-II) by broiler litter-derived biochars in water and soil. J Agric Food Chem 58:5538–5544. doi:10.​1021/​Jf9044217 CrossRef
    Udeigwe TK, Eze PN, Teboh JM, Stietiya MH (2011) Application, chemistry, and environmental implications of contaminant-immobilization amendments on agricultural soil and water quality. Environ Int 37:258–267. doi:10.​1016/​j.​envint.​2010.​08.​008 CrossRef
    Van Devivere PC, Saveyn H, Verstraete W, Feijtel TCJ, Schowanek DR (2001) Biodegradation of metal-[S, S]-EDDS complexes. Environ Sci Technol 35:1765–1770. doi:10.​1021/​Es0001153 CrossRef
    Vangronsveld J et al (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut R 16:765–794. doi:10.​1007/​s11356-009-0213-6 CrossRef
    Walker DJ, Clemente R, Bernal MP (2004) Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere 57:215–224. doi:10.​1016/​j.​chemosphere.​2004.​05.​020 CrossRef
    Wang AG, Luo CL, Yang RX, Chen YH, Shen ZG, Li XD (2012) Metal leaching along soil profiles after the EDDS application—a field study. Environ Pollut 164:204–210. doi:10.​1016/​j.​envpol.​2012.​01.​031 CrossRef
    Wang GQ, Koopmans GF, Song J, Temminghoff EJM, Luo YM, Zhao QG, Japenga J (2007) Mobilization of heavy metals from contaminated paddy soil by EDDS, EDTA, and elemental sulfur. Environ Geochem Heallth 29:221–235. doi:10.​1007/​s10653-006-9078-5 CrossRef
    Yan DYS, Yip TCM, Yui MMT, Tsang DCW, Lo IMC (2010) Influence of EDDS-to-metal molar ratio, solution pH, and soil-to-solution ratio on metal extraction under EDDS deficiency. J Hazard Mater 178:890–894. doi:10.​1016/​j.​jhazmat.​2010.​02.​021 CrossRef
    Yang L, Luo CL, Liu Y, Quan LT, Chen YH, Shen ZG (2013a) Residual effects of EDDS leachates on plants during EDDS-assisted phytoremediation of copper contaminated soil. Sci Total Environ 444:263–270. doi:10.​1016/​j.​scitotenv.​2012.​11.​085 CrossRef
    Yang L, Wang GP, Cheng ZN, Liu Y, Shen ZG, Luo CL (2013b) Influence of the application of chelant EDDS on soil enzymatic activity and microbial community structure. J Hazard Mater 262:561–570. doi:10.​1016/​j.​jhazmat.​2013.​09.​009 CrossRef
    Yang RX, Luo CL, Zhang G, Li XD, Shen ZG (2012) Extraction of heavy metals from e-waste contaminated soils using EDDS. J Environ Sci-China 24:1985–1994. doi:10.​1016/​S1001-0742(11)61036-X CrossRef
    Yip TCM, Tsang DCW, Lo IMC (2010) Interactions of chelating agents with Pb-goethite at the solid–liquid interface: Pb extraction and re-adsorption. Chemosphere 81:415–421. doi:10.​1016/​j.​chemosphere.​2010.​06.​069 CrossRef
    Zhao FJ, McGrath SP (2009) Biofortification and phytoremediation. Curr Opin Plant Biol 12:373–380. doi:10.​1016/​j.​pbi.​2009.​04.​005 CrossRef
  • 作者单位:Li Yang (1) (2)
    Longfei Jiang (1) (3)
    Guiping Wang (1)
    Yahua Chen (1)
    Zhenguo Shen (1)
    Chunling Luo (3)

    1. College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
    2. Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers University, Yancheng, 224002, China
    3. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Industrial Pollution Prevention
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1614-7499
文摘
In this study, the effectiveness of six soil amendments (ferrihydrite, manganese dioxide, gibbsite, calcium carbonate, biochar, and organic fertilizer) was investigated to assess the feasibility of minimizing possible environmental contaminant leaching during S,S-ethylenediaminedisuccinic acid (EDDS)-enhanced phytoextraction process based on 0.01-M CaCl2 extraction. Results showed that the application of EDDS could significantly increase Cu concentrations in the leaching solution. Compared with control, incorporation of six amendments (excluding organic fertilizer) significantly decreased CaCl2-extractable Cu concentrations in both soils. When EDDS-containing solutions leached from the soil columns (mimicking the upper soil layers) were added to soils with different amendments (mimicking the subsoil), CaCl2-extractable Cu in the soils amended with ferrihydrite, manganese dioxide, gibbsite, and calcium carbonate was significantly lower than that in the control soil (no amendments) and remained relatively constant during the first 14 days. Incorporation of biochar or organic fertilizer had no positive effect on the immobilization of Cu in EDDS leachates in soils. After 14 days, CaCl2-extractable Cu concentration decreased rapidly in soils incorporated with various amendments. Integrating soil washing with biodegradable chelating agents or chelant-enhanced phytoextraction and immobilization of heavy metals in subsoil could be used to rapidly reduce the concentration of bioavailable metal fractions in the upper soil layers and minimize environmental risks of secondary pollution.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700