A parallel Hamiltonian formulation for forward dynamics of closed-loop multibody systems
详细信息    查看全文
文摘
This paper presents a novel recursive divide-and-conquer formulation for the simulation of complex constrained multibody system dynamics based on Hamilton’s canonical equations (HDCA). The systems under consideration are subjected to holonomic, independent constraints and may include serial chains, tree chains, or closed-loop topologies. Although Hamilton’s canonical equations exhibit many advantageous features compared to their acceleration based counterparts, it appears that there is a lack of dedicated parallel algorithms for multi-rigid-body system dynamics based on the Hamiltonian formulation. The developed HDCA formulation leads to a two-stage procedure. In the first phase, the approach utilizes the divide and conquer scheme, i.e., a hierarchic assembly–disassembly process to traverse the multibody system topology in a binary tree manner. The purpose of this step is to evaluate the joint velocities and constraint force impulses. The process exhibits linear \(O(n)\) (\(n\) – number of bodies) and logarithmic \(O(\log_{2}{n})\) numerical cost, in serial and parallel implementations, respectively. The time derivatives of the total momenta are directly evaluated in the second parallelizable step of the algorithm. Sample closed-loop test cases indicate very small constraint violation errors at the position and velocity level as well as marginal energy drift without any additional form of constraint stabilization techniques involved in the solution process. The results are comparatively set against more standard acceleration based Featherstone’s DCA approach to indicate the performance of the HDCA algorithm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700