Co-localization of LTBP-2 with FGF-2 in fibrotic human keloid and hypertrophic scar
详细信息    查看全文
  • 作者:Mohamed A. Sideek ; Abdulrahman Teia ; Zlatko Kopecki…
  • 关键词:LTBP ; 2 ; FGF ; 2 ; Fibrosis ; Keloid ; Hypertrophic scar
  • 刊名:Journal of Molecular Histology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:47
  • 期:1
  • 页码:35-45
  • 全文大小:2,718 KB
  • 参考文献:Aarabi S, Longaker MT, Gurtner GC (2007) Hypertrophic scar formation following burns and trauma: new approaches to treatment. PLoS Med 4:e234. doi:10.​1371/​journal.​pmed.​0040234 PubMed PubMedCentral CrossRef
    Akhurst RJ, Hata A (2012) Targeting the TGFbeta signalling pathway in disease. Nat Rev Drug Discov 11:790–811. doi:10.​1038/​nrd3810 PubMed PubMedCentral CrossRef
    Akita S, Akino K, Imaizumi T, Hirano A (2008) Basic fibroblast growth factor accelerates and improves second-degree burn wound healing. Wound Repair Regen Off Publ Wound Heal Soc Euro Tissue Repair Soc 16:635–641. doi:10.​1111/​j.​1524-475X.​2008.​00414.​x
    Ali M et al (2009) Null mutations in LTBP2 cause primary congenital glaucoma. Am J Hum Genet 84:664–671. doi:10.​1016/​j.​ajhg.​2009.​03.​017 PubMed PubMedCentral CrossRef
    Amadeu TP, Braune AS, Porto LC, Desmouliere A, Costa AM (2004) Fibrillin-1 and elastin are differentially expressed in hypertrophic scars and keloids. Wound Repair Regen Off Publ Wound Heal Soc Euro Tissue Repair Soc 12:169–174. doi:10.​1111/​j.​1067-1927.​2004.​012209.​x
    Bai Y, Zhang P, Zhang X, Huang J, Hu S, Wei Y (2012) LTBP-2 acts as a novel marker in human heart failure—a preliminary study. Biomark Biochem Indic Expo Resp Susceptibility Chem 17:407–415. doi:10.​3109/​1354750X.​2012.​677860
    Bayat A, McGrouther DA, Ferguson MW (2003) Skin scarring. BMJ (Clin Res ed) 326:88–92CrossRef
    Bikfalvi A, Klein S, Pintucci G, Rifkin DB (1997) Biological roles of fibroblast growth factor-2. Endocr Rev 18:26–45. doi:10.​1210/​edrv.​18.​1.​0292 PubMed
    Bock O, Schmid-Ott G, Malewski P, Mrowietz U (2006) Quality of life of patients with keloid and hypertrophic scarring. Arch Dermatol Res 297:433–438. doi:10.​1007/​s00403-006-0651-7 PubMed CrossRef
    Brown KK, Wells AU (2008) Recent clinical trials in idiopathic pulmonary fibrosis and the BUILD-1 study. Euro Respir Rev 17:116–122. doi:10.​1183/​09059180.​00010903 CrossRef
    Chan SH et al (2011) The ECM protein LTBP-2 is a suppressor of esophageal squamous cell carcinoma tumor formation but higher tumor expression associates with poor patient outcome. Int J Cancer 129:565–573. doi:10.​1002/​ijc.​25698 PubMed CrossRef
    Chua CC, Rahimi N, Forsten-Williams K, Nugent MA (2004) Heparan sulfate proteoglycans function as receptors for fibroblast growth factor-2 activation of extracellular signal-regulated kinases 1 and 2. Circ Res 94:316–323. doi:10.​1161/​01.​RES.​0000112965.​70691.​AC PubMed CrossRef
    Daian T et al (2003) Insulin-like growth factor-I enhances transforming growth factor-[beta]-induced extracellular matrix protein production through the P38/activating transcription factor-2 signaling pathway in keloid fibroblasts. J Investig Dermatol 120:956–962PubMed CrossRef
    de Vega S, Iwamoto T, Yamada Y (2009) Fibulins: multiple roles in matrix structures and tissue functions. Cell Mol Life Sci 66:1890–1902. doi:10.​1007/​s00018-009-8632-6 PubMed CrossRef
    Dhandapani KM, Khan MM, Wade FM, Wakade C, Mahesh VB, Brann DW (2007) Induction of transforming growth factor-beta1 by basic fibroblast growth factor in rat C6 glioma cells and astrocytes is mediated by MEK/ERK signaling and AP-1 activation. J Neurosci Res 85:1033–1045. doi:10.​1002/​jnr.​21182 PubMed CrossRef
    Duncan MR, Berman B (1991) Stimulation of collagen and glycosaminoglycan production in cultured human adult dermal fibroblasts by recombinant human interleukin 6. J Invest Dermatol 97:686–692PubMed CrossRef
    Eto H et al (2012) Therapeutic potential of fibroblast growth factor-2 for hypertrophic scars: upregulation of MMP-1 and HGF expression. Lab Invest 92:214–223. doi:10.​1038/​labinvest.​2011.​127 PubMed CrossRef
    Faivre L et al (2003) In frame fibrillin-1 gene deletion in autosomal dominant Weill–Marchesani syndrome. J Med Genet 40:34–36PubMed PubMedCentral CrossRef
    Floege J, Hudkins KL, Eitner F, Cui Y, Morrison RS, Schelling MA, Alpers CE (1999) Localization of fibroblast growth factor-2 (basic FGF) and FGF receptor-1 in adult human kidney1. Kidney Int 56:883–897PubMed CrossRef
    Fu X, Shen Z, Chen Y, Xie J, Guo Z, Zhang M, Sheng Z (2000) Recombinant bovine basic fibroblast growth factor accelerates wound healing in patients with burns, donor sites and chronic dermal ulcers. Chin Med J 113:367–371PubMed
    Gibson MA, Hatzinikolas G, Davis EC, Baker E, Sutherland GR, Mecham RP (1995) Bovine latent transforming growth factor beta 1-binding protein 2: molecular cloning, identification of tissue isoforms, and immunolocalization to elastin-associated microfibrils. Mol Cell Biol 15:6932–6942PubMed PubMedCentral CrossRef
    Goodwin A, Jenkins G (2009) Role of integrin-mediated TGFbeta activation in the pathogenesis of pulmonary fibrosis. Biochem Soc Trans 37:849–854. doi:10.​1042/​BST0370849 PubMed CrossRef
    Haji-Seyed-Javadi R et al (2012) LTBP2 mutations cause Weill–Marchesani and Weill–Marchesani-like syndrome and affect disruptions in the extracellular matrix. Hum Mutat 33:1182–1187. doi:10.​1002/​humu.​22105 PubMed CrossRef
    Hirani R, Hanssen E, Gibson MA (2007) LTBP-2 specifically interacts with the amino-terminal region of fibrillin-1 and competes with LTBP-1 for binding to this microfibrillar protein. Matrix Biol J Int Soc Matrix Biol 26:213–223. doi:10.​1016/​j.​matbio.​2006.​12.​006 CrossRef
    Ikeda M et al (2009) Elastic fiber assembly is disrupted by excessive accumulation of chondroitin sulfate in the human dermal fibrotic disease, keloid. Biochem Biophys Res Commun 390:1221–1228. doi:10.​1016/​j.​bbrc.​2009.​10.​125 PubMed CrossRef
    Jumper N, Paus R, Bayat A (2015) Functional histopathology of keloid disease. Histol Histopathol 30:1033–1057. doi:10.​14670/​HH-11-624 PubMed
    Kardami E, Detillieux K, Ma X, Jiang Z, Santiago JJ, Jimenez SK, Cattini PA (2007) Fibroblast growth factor-2 and cardioprotection. Heart Fail Rev 12:267–277. doi:10.​1007/​s10741-007-9027-0 PubMed CrossRef
    Kashpur O, LaPointe D, Ambady S, Ryder EF, Dominko T (2013) FGF2-induced effects on transcriptome associated with regeneration competence in adult human fibroblasts. BMC Genom 14:656. doi:10.​1186/​1471-2164-14-656 CrossRef
    Kissin EY, Korn JH (2003) Fibrosis in scleroderma. Rheum Dis Clin North Am 29:351–369PubMed CrossRef
    Kopecki Z et al (2013) Topically applied flightless I neutralizing antibodies improve healing of blistered skin in a murine model of epidermolysis bullosa acquisita. J Invest Dermatol 133:1008–1016. doi:10.​1038/​jid.​2012.​457 PubMed CrossRef
    Krenning G, Zeisberg EM, Kalluri R (2010) The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol 225:631–637. doi:10.​1002/​jcp.​22322 PubMed PubMedCentral CrossRef
    Kurita Y, Tsuboi R, Ueki R, Rifkin DB, Ogawa H (1992) Immunohistochemical localization of basic fibroblast growth factor in wound healing sites of mouse skin. Arch Dermatol Res 284:193–197PubMed CrossRef
    Li Y et al (2015) MRP1 knockdown down-regulates the deposition of collagen and leads to a reduced hypertrophic scar fibrosis. J Mol Histol 46:357–364. doi:10.​1007/​s10735-015-9629-0 PubMed CrossRef
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods (San Diego, CA) 25:402–408. doi:10.​1006/​meth.​2001.​1262 CrossRef
    Marneros AG, Norris JE, Watanabe S, Reichenberger E, Olsen BR (2004) Genome scans provide evidence for keloid susceptibility loci on chromosomes 2q23 and 7p11. J Invest Dermatol 122:1126–1132. doi:10.​1111/​j.​0022-202X.​2004.​22327.​x PubMed CrossRef
    Meng XM, Tang PM, Li J, Lan HY (2015) TGF-beta/Smad signaling in renal fibrosis. Front Physiol 6:82. doi:10.​3389/​fphys.​2015.​00082 PubMed PubMedCentral CrossRef
    Menz C, Parsi MK, Adams JR, Sideek MA, Kopecki Z, Cowin AJ, Gibson MA (2015) LTBP-2 has a single high-affinity binding site for FGF-2 and blocks FGF-2-induced cell proliferation. PLoS ONE 10:e0135577. doi:10.​1371/​journal.​pone.​0135577 PubMed PubMedCentral CrossRef
    Moren A et al (1994) Identification and characterization of LTBP-2, a novel latent transforming growth factor-beta-binding protein. J Biol Chem 269:32469–32478PubMed
    Nakashima M et al (2010) A genome-wide association study identifies four susceptibility loci for keloid in the Japanese population. Nat Genetics 42:768–771. doi:10.​1038/​ng.​645 PubMed CrossRef
    Ono I, Akasaka Y, Kikuchi R, Sakemoto A, Kamiya T, Yamashita T, Jimbow K (2007) Basic fibroblast growth factor reduces scar formation in acute incisional wounds. Wound Repair Regen Off Publ Wound Heal Soc Euro Tissue Repair Soc 15:617–623. doi:10.​1111/​j.​1524-475X.​2007.​00293.​x
    Ortega S, Ittmann M, Tsang SH, Ehrlich M, Basilico C (1998) Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. Proc Natl Acad Sci USA 95:5672–5677PubMed PubMedCentral CrossRef
    Parsi MK, Adams JR, Whitelock J, Gibson MA (2010) LTBP-2 has multiple heparin/heparan sulfate binding sites. Matrix Biol J Int Soc Matrix Biol 29:393–401. doi:10.​1016/​j.​matbio.​2010.​03.​005 CrossRef
    Phillips AO, Topley N, Morrisey K, Williams JD, Steadman R (1997) Basic fibroblast growth factor stimulates the release of preformed transforming growth factor beta 1 from human proximal tubular cells in the absence of de novo gene transcription or mRNA translation. Lab Investig J Tech Methods Pathol 76:591–600
    Pohlers D et al (2009) TGF-beta and fibrosis in different organs—molecular pathway imprints. Biochim Biophys Acta 1792:746–756. doi:10.​1016/​j.​bbadis.​2009.​06.​004 PubMed CrossRef
    Raghu G, Weycker D, Edelsberg J, Bradford WZ, Oster G (2006) Incidence and prevalence of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 174:810–816. doi:10.​1164/​rccm.​200602-163OC PubMed CrossRef
    Rastegar A, Kashgarian M (1998) The clinical spectrum of tubulointerstitial nephritis. Kidney Int 54:313–327. doi:10.​1046/​j.​1523-1755.​1998.​00001.​x PubMed CrossRef
    Ray S, Ju X, Sun H, Finnerty CC, Herndon DN, Brasier AR (2013) The IL-6 trans-signaling-STAT3 pathway mediates ECM and cellular proliferation in fibroblasts from hypertrophic scar. J Invest Dermatol 133:1212–1220. doi:10.​1038/​jid.​2012.​499 PubMed PubMedCentral CrossRef
    Saharinen J, Keski-Oja J (2000) Specific sequence motif of 8-Cys repeats of TGF-beta binding proteins, LTBPs, creates a hydrophobic interaction surface for binding of small latent TGF-beta. Mol Biol Cell 11:2691–2704PubMed PubMedCentral CrossRef
    Schultz GS, Wysocki A (2009) Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen 17:153–162. doi:10.​1111/​j.​1524-475X.​2009.​00466.​x PubMed CrossRef
    Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700PubMed CrossRef
    Shi HX et al (2013) The anti-scar effects of basic fibroblast growth factor on the wound repair in vitro and in vivo. PLoS ONE 8:e59966. doi:10.​1371/​journal.​pone.​0059966 PubMed PubMedCentral CrossRef
    Shih B, Bayat A (2010) Genetics of keloid scarring. Arch Dermatol Res 302:319–339. doi:10.​1007/​s00403-009-1014-y PubMed CrossRef
    Sideek MA, Menz C, Parsi MK, Gibson MA (2014) LTBP-2 competes with tropoelastin for binding to fibulin-5 and heparin, and is a negative modulator of elastinogenesis. Matrix Biol J Int Soc Matrix Biol 34:114–123. doi:10.​1016/​j.​matbio.​2013.​10.​007 CrossRef
    Sidgwick GP, Bayat A (2012) Extracellular matrix molecules implicated in hypertrophic and keloid scarring. J Euro Acad Dermatol Venereol 26:141–152. doi:10.​1111/​j.​1468-3083.​2011.​04200.​x CrossRef
    Sinha S, Heagerty AM, Shuttleworth CA, Kielty CM (2002) Expression of latent TGF-beta binding proteins and association with TGF-beta 1 and fibrillin-1 following arterial injury. Cardiovasc Res 53:971–983PubMed CrossRef
    Strutz F, Neilson EG (2003) New insights into mechanisms of fibrosis in immune renal injury. Springer Semin Immunopathol 24:459–476. doi:10.​1007/​s00281-003-0123-5 PubMed CrossRef
    Strutz F, Zeisberg M, Hemmerlein B, Sattler B, Hummel K, Becker V, Muller GA (2000) Basic fibroblast growth factor expression is increased in human renal fibrogenesis and may mediate autocrine fibroblast proliferation. Kidney Int 57:1521–1538PubMed CrossRef
    Suga H et al. (2009) IFATS collection: fibroblast growth factor-2-induced hepatocyte growth factor secretion by adipose-derived stromal cells inhibits postinjury fibrogenesis through a c-Jun N-terminal kinase-dependent mechanism. Stem Cells (Dayton, Ohio) 27:238–249. doi:10.​1634/​stemcells.​2008-0261
    Tan Y et al (2008) Comparison of the therapeutic effects recombinant human acidic and basic fibroblast growth factors in wound healing in diabetic patients. J Health Sci 54:432–440. doi:10.​1248/​jhs.​54.​432 CrossRef
    Thannickal VJ, Zhou Y, Gaggar A, Duncan SR (2014) Fibrosis: ultimate and proximate causes. J Clin Invest 124:4673–4677. doi:10.​1172/​JCI74368 PubMed PubMedCentral CrossRef
    Verhaegen PD, van Zuijlen PP, Pennings NM, van Marle J, Niessen FB, van der Horst CM, Middelkoop E (2009) Differences in collagen architecture between keloid, hypertrophic scar, normotrophic scar, and normal skin: an objective histopathological analysis. Wound Repair Regen Off Publ Wound Heal Soc Euro Tissue Repair Soc 17:649–656. doi:10.​1111/​j.​1524-475X.​2009.​00533.​x
    Wynn TA (2004) Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol 4:583–594. doi:10.​1038/​nri1412 PubMed PubMedCentral CrossRef
    Wynn TA (2007) Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 117:524–529. doi:10.​1172/​JCI31487 PubMed PubMedCentral CrossRef
    Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210. doi:10.​1002/​path.​2277 PubMed PubMedCentral CrossRef
    Xie JL et al (2008) Basic fibroblast growth factor (bFGF) alleviates the scar of the rabbit ear model in wound healing. Wound Repair Regen Off Publ Wound Heal Soc Euro Tissue Repair Soc 16:576–581. doi:10.​1111/​j.​1524-475X.​2008.​00405.​x
    Yu PJ, Ferrari G, Galloway AC, Mignatti P, Pintucci G (2007) Basic fibroblast growth factor (FGF-2): the high molecular weight forms come of age. J Cell Biochem 100:1100–1108. doi:10.​1002/​jcb.​21116 PubMed CrossRef
  • 作者单位:Mohamed A. Sideek (1) (2)
    Abdulrahman Teia (1)
    Zlatko Kopecki (3)
    Allison J. Cowin (3)
    Mark A. Gibson (1)

    1. Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide, Adelaide, SA, 5005, Australia
    2. Department of Biomedical Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
    3. Regenerative Medicine, Mawson Institute, University of South Australia, Adelaide, SA, 5095, Australia
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Biomedicine
    Developmental Biology
  • 出版者:Springer Netherlands
  • ISSN:1567-2387
文摘
We have recently shown that Latent transforming growth factor-beta-1 binding protein-2 (LTBP-2) has a single high-affinity binding site for fibroblast growth factor-2 (FGF-2) and that LTBP-2 blocks FGF-2 induced cell proliferation. Both proteins showed strong co-localisation within keloid skin from a single patient. In the current study, using confocal microscopy, we have investigated the distribution of the two proteins in normal and fibrotic skin samples including normal scar tissue, hypertrophic scars and keloids from multiple patients. Consistently, little staining for either protein was detected in normal adult skin and normal scar samples but extensive co-localisation of the two proteins was observed in multiple examples of hypertrophic scars and keloids. LTBP-2 and FGF-2 were co-localised to fine fibrous elements within the extracellular matrix identified as elastic fibres by immunostaining with anti-fibrillin-1 and anti-elastin antibodies. Furthermore, qPCR analysis of RNA samples from multiple patients confirmed dramatically increased expression of LTBP-2 and FGF-2, similar TGF-beta 1, in hypertrophic scar compared to normal skin and scar tissue. Overall the results suggest that elevated LTBP-2 may bind and sequester FGF-2 on elastic fibres in fibrotic tissues and modulate FGF-2’s influence on the repair and healing processes. Keywords LTBP-2 FGF-2 Fibrosis Keloid Hypertrophic scar

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700