Distributed REM-Assisted Radio Resource Management in LTE-A Networks
详细信息    查看全文
文摘
The successful actions of public-safety personnel during disaster recovery depend heavily on rapidly deployable and reliable mission-critical communication networks. As part of the Aerial Base Stations with Opportunistic Links for Unexpected Temporary Events project we focused on designing, prototyping and demonstrating a high-capacity, IP, mobile-data network with a low latency and large coverage, suitable for many forms of multi-media delivery, including public-safety and temporary-event use cases. In this paper we focus on a rapidly deployable wireless network based on the LTE-A-enabled, low-altitude Platforms and portable land mobile units to support disaster-relief activities. In order to minimize the inter- and intra-network interference during the radio networks operating phase, we have proposed and evaluated a novel, central-based, dynamic radio resource management algorithm for downlink communications that applies radio-interference maps from the radio environment map and traffic demands at a particular eNB. Using this we are able to efficiently allocate radio resources based on quality-of-service demands. The radio environmental maps are used to calculate the radio coverage and signal strength. In addition, we present the developed framework, which can be applied as a tool for the design, modelling, simulation and evaluation of an LTE-A network for emergency use cases and for estimating the system capacity in a dynamic (roll-in, roll-out phase) network deployment. The proposed algorithm is evaluated with the simulation model using possible real use cases (i.e., forest fire, and earthquake in an urban area) in real remote and urban regions of Slovenia.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700