Tribological Performance and Lubrication Mechanism of Alumina Nanoparticle Water-Based Suspensions in Ball-on-Three-Plate Testing
详细信息    查看全文
文摘
The lubrication performance of alumina (Al2O3) nanoparticle water-based suspensions was systematically investigated using a ball-on-three-plate testing configuration with alloy steel on stainless steel contact. The size and concentration of Al2O3 nanoparticle were varied to obtain optimal performance. The effects of testing load, sliding speed and contact surface roughness on the lubrication performance of the Al2O3 suspensions were investigated. It was found that 1 to 2 wt.% 30 nm Al2O3 nanoparticle suspensions showed up to 27% friction and 22% wear reduction, in comparison with water glycerol solution. Under different testing conditions, the suspensions also showed noticeably more stable and improved tribological performance. Wear mark analysis revealed that during tribological testing the nanoparticles formed a layer of dynamically balanced tribo-thin film, preventing the direct contact between asperities of alloy steel ball and stainless steel plate. The nanoparticles were also believed to fill up the trenches of the plate surface through mending effect and carry the wear debris induced in running-in period to avoid abrasive wear.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700