Identification of the Shear Plane During Sliding of Solid Boundary Films: Potassium Chloride Films on Iron
详细信息    查看全文
  • 作者:Hongyu Gao ; Wilfred T. Tysoe ; Ashlie Martini
  • 关键词:Boundary lubrication friction ; Friction mechanisms ; Dynamic modeling
  • 刊名:Tribology Letters
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:62
  • 期:1
  • 全文大小:1,530 KB
  • 参考文献:1.Sørensen, M.R., Jacobsen, K.W., Stoltze, P.: Simulations of atomic-scale sliding friction. Phys. Rev. B 53(4), 2101–2113 (1996)CrossRef
    2.Erdemir, A., Erck, R.A., Robles, J.: Relationship of Hertzian contact pressure to friction behavior of self-lubricating boric acid films. Surf. Coat. Technol. 49(1–3), 435–438 (1991)CrossRef
    3.Gao, F., Furlong, O.J., Kotvis, P.V., Tysoe, W.T.: Pressure dependence of shear strengths of thin films on metal surfaces measured in ultrahigh vacuum. Tribol. Lett. 31(2), 99–106 (2008)CrossRef
    4.Müser, M.H.: Lubricants under high local pressure: liquids act like solids. Materialwiss. Werkstofftech. 35(10–11), 603–609 (2004)CrossRef
    5.Briscoe, B.J., Evans, D.C.B.: The shear properties of Langmuir–Blodgett layers. Proc. R. Soc. Lond. A Math. Phys. Sci. 380(1779), 389–407 (1982)CrossRef
    6.Chambers, S.A.: Epitaxial growth and properties of thin film oxides. Surf. Sci. Rep. 39(5–6), 105–180 (2000)CrossRef
    7.Shin, Y.J., Stromberg, R., Nay, R., Huang, H., Wee, A.T.S., Yang, H., Bhatia, C.S.: Frictional characteristics of exfoliated and epitaxial graphene. Carbon 49(12), 4070–4073 (2011)CrossRef
    8.Hirano, M., Shinjo, K.: Atomistic locking and friction. Phys. Rev. B 41(17), 11837–11851 (1990)CrossRef
    9.Müser, M.H., Wenning, L., Robbins, M.O.: Simple microscopic theory of Amontons’s laws for static friction. Phys. Rev. Lett. 86(7), 1295–1298 (2001)CrossRef
    10.Müser, M.H., Robbins, M.O.: Conditions for static friction between flat crystalline surfaces. Phys. Rev. B 61(3), 2335–2342 (2000)CrossRef
    11.Müser, M.H.: Structural lubricity: role of dimension and symmetry. Europhys. Lett. 66(1), 97–103 (2004)
    12.Peyrard, M., Aubry, S.: Critical behaviour at the transition by breaking of analyticity in the discrete Frenkel–Kontorova model. J. Phys. C Solid State Phys. 16(9), 1593 (1983)CrossRef
    13.Gao, F., Kotvis, P.V., Tysoe, W.T.: The frictional properties of thin inorganic halide films on iron measured in ultrahigh vacuum. Tribol. Lett. 15(3), 327–332 (2003)CrossRef
    14.Filleter, T., Paul, W., Bennewitz, R.: Atomic structure and friction of ultrathin films of KBr on Cu(100). Phys. Rev. B 77(3), 035430 (2008)CrossRef
    15.Bennewitz, R., Bammerlin, M., Guggisberg, M., Loppacher, C., Baratoff, A., Meyer, E., Güntherodt, H.J.: Aspects of dynamic force microscopy on NaCl/Cu(111): resolution, tip-sample interactions and cantilever oscillation characteristics. Surf. Interface Anal. 27(5–6), 462–466 (1999)CrossRef
    16.Bennewitz, R., Schär, S., Gnecco, E., Pfeiffer, O., Bammerlin, M., Meyer, E.: Atomic structure of alkali halide surfaces. Appl. Phys. A 78(6), 837–841 (2004)CrossRef
    17.Steiner, P., Gnecco, E., Filleter, T., Gosvami, N., Maier, S., Meyer, E., Bennewitz, R.: Atomic friction investigations on ordered superstructures. Tribol. Lett. 39(3), 321–327 (2010)CrossRef
    18.Steiner, P., Roth, R., Gnecco, E., Baratoff, A., Meyer, E.: Angular dependence of static and kinetic friction on alkali halide surfaces. Phys. Rev. B 82(20), 205417 (2010)CrossRef
    19.Yoshimichi, N., Hitoshi, S.: Frictional force microscopic anisotropy on (001) surfaces of alkali halides and MgO. Jpn. J. Appl. Phys. 39(7S), 4497 (2000)
    20.Garvey, M., Furlong, O.J., Weinert, M., Tysoe, W.T.: Shear properties of potassium chloride films on iron obtained using density functional theory. J. Phys. Condens. Matter 23(26), 265003 (2011)CrossRef
    21.Garvey, M., Weinert, M., Tysoe, W.T.: On the pressure dependence of shear strengths in sliding, boundary-layer friction. Tribol. Lett. 44(1), 67–73 (2011)CrossRef
    22.Olson, D., Gao, H., Tang, C., Tysoe, W.T., Martini, A.: Pressure dependence of the interfacial structure of potassium chloride films on iron. Thin Solid Films 593, 150–157 (2015)CrossRef
    23.Sangster, M.J.L., Dixon, M.: Interionic potentials in alkali halides and their use in simulations of the molten salts. Adv. Phys. 25(3), 247–342 (1976)CrossRef
    24.Ribeiro, M.C.C.: Chemla effect in molten LiCl/KCl and LiF/KF mixtures. J. Phys. Chem. B 107(18), 4392–4402 (2003)CrossRef
    25.Daw, M.S., Baskes, M.I.: Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett. 50(17), 1285–1288 (1983)CrossRef
    26.Daw, M.S., Baskes, M.I.: Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29(12), 6443–6453 (1984)CrossRef
    27.Mendelev, M.I., Han, S., Srolovitz, D.J., Ackland, G.J., Sun, D.Y., Asta, M.: Development of new interatomic potentials appropriate for crystalline and liquid iron. Philos. Mag. 83(35), 3977–3994 (2003)CrossRef
    28.Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)CrossRef
    29.Prandtl, L.: Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Z. Angew. Math. Mech. 8, 85 (1928)CrossRef
    30.Tomlinson, G.A.: A molecular theory of friction. Philos. Mag. 7, 905 (1929)CrossRef
    31.Spikes, H., Tysoe, W.T.: On the commonality between theoretical models for fluid and solid friction, wear and tribochemistry. Tribol. Lett. 59(1), 1–14 (2015)CrossRef
    32.Dong, Y., Vadakkepatt, A., Martini, A.: Analytical models for atomic friction. Tribol. Lett. 44(3), 367–386 (2011)CrossRef
    33.Dong, Y., Li, Q., Wu, J., Martini, A.: Friction, slip and structural inhomogeneity of the buried interface. Model. Simul. Mater. Sci. Eng. 19(6), 065003 (2011)CrossRef
    34.Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E., Brune, H.: Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91(8), 084502 (2003)CrossRef
    35.Furlong, O.J., Manzi, S.J., Martini, A., Tysoe, W.T.: Influence of potential shape on constant-force atomic-scale sliding friction models. Tribol. Lett. 60(2), 1–9 (2015)CrossRef
  • 作者单位:Hongyu Gao (1)
    Wilfred T. Tysoe (2)
    Ashlie Martini (1)

    1. School of Engineering, University of California – Merced, Merced, CA, 95343, USA
    2. Department of Chemistry and Laboratory for Surface Studies, University of Wisconsin – Milwaukee, Milwaukee, WI, 53211, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Tribology, Corrosion and Coatings
    Surfaces and Interfaces and Thin Films
    Theoretical and Applied Mechanics
    Physical Chemistry
    Nanotechnology
  • 出版者:Springer Netherlands
  • ISSN:1573-2711
文摘
The commonly observed linear variation in shear strength with contact pressure is explored using a model system consisting of a potassium chloride (KCl) film between two iron counterfaces, for which a linear dependence has been found experimentally. The effect of artificially changing the KCl lattice spacing is explored using molecular dynamics (MD) simulations, where the interaction potential between the iron and KCl was previously optimized using surface science experiments for KCl on iron. It is found that the shear plane can change from occurring within the KCl film to taking place between the film and iron, depending on lattice spacing. In addition, shear within the KCl film leads to an increase in friction force with lattice spacing, while shear at the KCl–Fe interface leads to a decrease in friction with lattice spacing. The transition between the two regimes depends on the applied load. MD simulations of an equilibrium KCl film reveal that shear occurs at the KCl–iron interface, consistent with experiment, where no KCl transfer is found. Accordingly, the friction force increases with load, where the MD simulations yield a proportionality constant between shear strength and contact pressure of 0.115 ± 0.004, in excellent agreement with the experimental value of 0.14 ± 0.02. This result can be interpreted using the Prandtl–Tomlinson model where the pressure dependence arises from the external work carried out on the system due to the change in interlayer spacing at the sliding interface.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700