Adventitious rooting adjuvant activity of 1,3-di(benzo[d]oxazol-5-yl)urea and 1,3-di(benzo[d]oxazol-6-yl)urea: new insights and perspectives
详细信息    查看全文
  • 作者:Federica Brunoni (1)
    Enrico Rolli (1)
    Lucia Dramis (1)
    Matteo Incerti (3)
    Dolores Abarca (2)
    Alberto Pizarro (2)
    Carmen Diaz-Sala (2)
    Ada Ricci (1)
  • 关键词:Adventitious rooting ; Auxin ; signalling pathway ; Auxin ; spatial distribution ; Distantly ; related species ; Urea derivatives
  • 刊名:Plant Cell, Tissue and Organ Culture
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:118
  • 期:1
  • 页码:111-124
  • 全文大小:
  • 参考文献:1. Altamura MM (1996) Root histogenesis in herbaceous and woody explants cultured in vitro. A critical review. Agronomie 16:589-02 CrossRef
    2. Auderset G, Moncousin C, O’Rourke J, Morré DJ (1996) Stimulation of root formation by thiol compounds. Hortic Sci 31:240-42
    3. Auderset G, Moncousin C, O’Rourke J, Morré DJ (1997) Stimulation of root formation in difficult-to-root woody cuttings by dithiothreitol. Int J Plant Sci 158:132-35 CrossRef
    4. Bai F, DeMason D (2008) Hormone interactions and regulation of / PsPK2:GUS compared with / DR5:GUS and / PID:GUS in / Arabidopsis thaliana. Am J Bot 95:133-45 CrossRef
    5. Bartel B, LeClere S, Magidin M, Zolman B (2001) Inputs to the active indole-3-acetic acid pool: de novo synthesis, conjugate hydrolysis and indole-3-butyric acid β-oxidation. J Plant Growth Regul 20:198-16 CrossRef
    6. Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients, as a common module for plant organ formation. Cell 115:591-02 CrossRef
    7. Berlyn GP, Miksche JP (1976) Botanical microtechnique and cytochemistry. Iowa State University Press, Ames
    8. Blakesley D (1994) Auxin metabolism and adventitious root initiation. In: Davies TD, Haissig BE (eds) Biology of adventitious root formation. Plenum Press, New York, pp 143-54 CrossRef
    9. Casimiro I, Marchant A, Bhalerao R, Beeckman T, Dhooge S, Swarup R, Graham N, Inze D, Sandberg G, Casero P, Bennett M (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843-52 CrossRef
    10. Cheng B, Peterson CM, Mitchell RJ (1992) The role of sucrose, auxin and explant source on in vitro rooting of seedling explants of / Eucalyptus sideroxylon. Plant Sci 87:207-14 CrossRef
    11. Cooper WC (1935) Hormones in relation to root formation on stem cuttings. Plant Physiol 10:789-94 CrossRef
    12. De Klerk GJ (1995) Hormone requirements during the successive phases of rooting of Malus microcuttings. In: Terzi M et al (eds) Current issues in plant molecular and cellular biology. Kluwer Academic Publishers, The Netherlands, pp 111-16 CrossRef
    13. De Klerk GJ, Ter Brugge J, Marinova S (1997) Effectiveness of indoleacetic acid, indolebutyric acid and naphtaleneacetic acid during adventitious root formation in vitro in Malus “Jork 9- Plant Cell Tissue Organ Cult 49:39-4 CrossRef
    14. De Klerk GJ, Van der Krieken W, De Jong JC (1999) The formation of adventitious roots: new concepts, new possibilities. In Vitro Cell Dev Biol Plant 35:189-99 CrossRef
    15. Delbarre A, Muller P, Imhoff V, Guern J (1996) Comparison of mechanisms controlling uptake and accumulation of 2,4-dichloro-phenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198:532-41 CrossRef
    16. Della Rovere F, Fattorini L, D’Angeli S, Veloccia A, Falasca G, Altamura MM (2013) Auxin and cytokinin control formation of the quiescent centre in the adventitious root apex of Arabidopsis. Ann Bot 112:1395-407 CrossRef
    17. Diaz-Sala C, Hutchinson KW, Goldfarb B, Greenwood MS (1996) Maturation-related loss in rooting competence in loblolly pine stem cuttings: the role of auxin transport, metabolism and tissue sensitivity. Physiol Plant 97:481-90 CrossRef
    18. Diaz-Sala C, Garrido G, Sabater B (2002) Age-related loss of rooting capability in / Arabidopsis thaliana and its reversal by peptides containing the Arg-Gly-Asp (RGD) motif. Physiol Plant 114:601-07 CrossRef
    19. Epstein E, Ludwig-Müller J (1993) Indole-3-butyric acid in plants: occurrence, biosynthesis, metabolism, and transport. Physiol Plant 88:382-89 CrossRef
    20. Falasca G, Reverberi M, Lauri P, Caboni E, DeStradis A, Altamura MM (2000) How / Agrobacterium rhizogenes triggers / de novo root formation in a recalcitrant woody plant: an integrated histological, ultrastructural and molecular analysis. New Phytol 145:77-3 CrossRef
    21. Fogaca CM, Fett-Neto AG (2005) Role of auxin and its modulators in the adventitious rooting of / Eucalyptus species differing in recalcitrance. Plant Growth Regul 45:1-0 CrossRef
    22. George EF (1993) Plant propagation by tissue culture. Exegetics Ltd, Edington
    23. Haissig BE, Davis TD (1994) A historical evaluation of adventitious rooting research in 1993. In: Davis TD, Haissig BE (eds) Biology of adventitious root formation. Plenum Publishing Corporation, London, pp 275-31 CrossRef
    24. Hartmann HT, Kester DE, Davies FT, Geneve RL (1997) Plant propagation: principles and practices, 6th edn. Prentice Hall International, New Jersey
    25. Ho?ek P, Kube? M, Laňková M, Dobrev PI, Klíma P, Kohoutová M, Petrá?ek J, Hoyerová K, Ji?ina M, Za?ímalová E (2012) Auxin transport at cellular level: new insights supported by mathematical modelling. J Exp Bot 63:3815-827 CrossRef
    26. James DJ (1983) Adventitious root formation in vitro in apple rootstocks ( / Malus pumila) I. Factors affecting the length of the auxin-sensitive phase in M9. Physiol Plant 57:149-53 CrossRef
    27. Kevers C, Bringaud C, Hausman JF, Gaspar T (1997) Putrescine involvement in the inductive phase of walnut shoots rooting in vitro. Saussurea 28:47-7
    28. Ludwig-Müller J (2000) Indole-3-butyric acid in plant growth and development. Plant Growth Regul 32:219-30 CrossRef
    29. Mattsson J, Ckurshumova W, Berleth T (2003) Auxin signaling in Arabidopsis leaf vascular development. Plant Physiol 131:1327-339 CrossRef
    30. Mugdil Y, Uhrig JF, Zhou J, Temple B, Jiang K, Jones AM (2009) Arabidopsis N-MYC DOWNREGULATED-LIKE1, a positive regulator of auxin transport in a G protein-mediated pathway. Plant Cell 21:3591-609 CrossRef
    31. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473-97 CrossRef
    32. Nick P, Han M-J, An G (2009) Auxin stimulates its own transport by shaping actin filaments. Plant Physiol 151:155-67 CrossRef
    33. Orlikowska T (1992) Influence of arginine on in vitro rooting of dwarf apple rootstock. Plant Cell Tissue Organ Cult 31:9-4
    34. Pawlicki N, Welander M (1995) Influence of carbohydrate source, auxin concentration and time of exposure on adventitious rooting of the apple rootstock Jork 9. Plant Sci 106:167-76 CrossRef
    35. Pozhvanov GA, Medvedev SS (2008) Auxin quantification based on histochemical staining of GUS under the control of auxin-responsive promoter. Russ J Plant Physiol 55:706-11 CrossRef
    36. Prem D, Solís MT, Bárány I, Rodríguez-Sanz H, Risue?o MC, Testillano PS (2012) A new microspore embryogenesis system under low temperature which mimics zygotic embryogenesis initials, expresses auxin and efficiently regenerates doubled-haploid plants in Brassica napus. BMC Plant Biol 12:127 CrossRef
    37. Ricci A, Carra A, Torelli A, Maggiali CA, Morini G, Branca C (2001) Cytokinin-like activity of N,N-diphenylureas. N,N-bis-(2,3-methylenedioxyphenyl)urea and N,N-bis-(3,4 methylenedioxyphenyl)urea enhance adventitious root formation in apple rootstock M26 ( / Malus pumila Mill.). Plant Sci 160:1055-065 CrossRef
    38. Ricci A, Carra A, Rolli E, Bertoletti C, Branca C (2003) N,N-bis-(2,3-methylenedioxyphenyl)urea and N,N-bis-(3,4-methylenedioxyphenyl)urea cooperate with auxin in enhancing root formation of M26 apple ( / Malus pumila Mill.) stem slices. Plant Growth Regul 40:207-12 CrossRef
    39. Ricci A, Incerti M, Rolli E, Vicini P, Morini G, Comini M, Branca C (2006) Diheteroarylurea derivatives as adventitious rooting adjuvants in mung bean shoots and M26 apple rootstock. Plant Growth Regul 50:201-09 CrossRef
    40. Ricci A, Rolli E, Dramis L, Diaz-Sala C (2008) N,N-bis-(2,3-methylenedioxyphenyl)urea and N,N-bis-(3,4-methylenedioxyphenyl)urea may enhance adventitious rooting in / Pinus radiata and affect expression of genes induced during adventitious rooting in the presence of exogenous auxin. Plant Sci 17:356-63 CrossRef
    41. Rugini E, Jacoboni A, Luppino M (1993) Role of basal shoot darkening and exogenous putrescine treatments on in vitro rooting and on endogenous polyamine changes in difficult-to-root woody species. Sci Hortic 53:63-2 CrossRef
    42. Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463-72 CrossRef
    43. Sanchez C, Vielba JM, Ferro E, Covelo G, Solé A, Abarca D, de Mier BS, Diaz-Sala C (2007) Two SCARECROW-LIKE genes from distantly-related forest species are induced in response to exogenous auxin in rooting-competent cuttings. Tree Physiol 27:1459-470 CrossRef
    44. Schmitz RY, Skoog F (1970) The use of dimethylsulfoxide as a solvent in the tobacco bioassay for cytokinins. Plant Physiol 45:537-38 CrossRef
    45. Smulders MJM, Van De Ven ETWM, Croes AF, Wullems GJ (1990) Metabolism of 1-naphtaleneacetic acid in explants of tobacco: evidence for release of free hormone from conjugates. J Plant Growth Regul 9:27-4 CrossRef
    46. Solé A, Sanchez C, Vielba JM, Valladares S, Abarca D, Diaz-Sala C (2008) Characterization and expression of a / Pinus radiata putative ortholog to the / Arabidopsis SHORT- / ROOT gene. Tree Physiol 28:1629-639 CrossRef
    47. Tamimi SM (2003) Stimulation of adventitious root formation in non-woody stem cuttings by uridine. Plant Growth Regul 40:257-60 CrossRef
    48. Ulmasov T, Murfett U, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963-971 CrossRef
    49. Van der Krieken WM, Breteler H, Visser MHM, Mavridou D (1993) The role of the conversion of IBA into IAA on root regeneration in apple: introduction of a test system. Plant Cell Rep 12:203-06 CrossRef
    50. Welander M, Huntrieser I (1981) The rooting ability of shoots raised in vitro from the apple rootstock A2 in juvenile and in adult growth phase. Physiol Plant 53:301-06 CrossRef
    51. Welander M, Geier T, Zhu L (2009) Improvement of rooting in woody species using the / rol genes. In: Niemi K, Scagel C (eds) Adventitious root formation of forest trees and horticultural plants-from genes to applications. Research Signpost, Trivandrum, pp 145-62
    52. Zimmerman PW, Wilcoxon F (1935) Several chemical growth substances which cause initiation of roots and other responses in plants. Contrib Boyce Thompson Inst 7:209-29
  • 作者单位:Federica Brunoni (1)
    Enrico Rolli (1)
    Lucia Dramis (1)
    Matteo Incerti (3)
    Dolores Abarca (2)
    Alberto Pizarro (2)
    Carmen Diaz-Sala (2)
    Ada Ricci (1)

    1. Dipartimento di Bioscienze, Università di Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
    3. Dipartimento di Farmacia, Università di Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
    2. Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871, Alcalá de Henares, Madrid, Spain
  • ISSN:1573-5044
文摘
Here we report new insights on the adventitious rooting adjuvant activity of 1,3-di(benzo[d]oxazol-5-yl)urea (5-BDPU) and 1,3-di(benzo[d]oxazol-6-yl)urea (6-BDPU), both symmetrically substituted urea derivatives that do not show either auxin- or cytokinin-like activity per se. Our data demonstrate that these synthetic molecules enhance adventitious rooting in distantly-related herbaceous and woody species, in the presence of endogenous or exogenous auxin. For the first time, we report that BDPUs enhance adventitious rooting in the presence of either indole-3-butyric acid (IBA) or 1-naphtalene acetic acid and that their optimal concentration depends on the strength of the exogenous auxin. Trying to understand the mode of action of BDPUs, we also show that their adventitious rooting adjuvant activity correlates with high mRNA levels of auxin-responsive genes related to the adventitious rooting process at the very early stages of adventitious rooting, before the activation of cell divisions in pine hypocotyls cuttings. The high mRNA levels are measured in the presence of low auxin concentrations and BDPUs. The mRNA levels quantified in these conditions are similar to those measured in the presence of high auxin concentrations but in the absence of BDPUs. In addition, the spatial distribution of endogenous auxin is localized in globular-shaped structures of cell divisions located centrifugal to the resin canals, at the positions of adventitious root formation, in the presence of urea derivatives and IBA after 6?days of the root induction process.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700