Magnetorheological behaviour of propylene glycol-based hematite nanofluids
详细信息    查看全文
  • 作者:Jésica Calvo-Bravo ; David Cabaleiro ; Manuel M. Pi?eiro ; Luis Lugo
  • 关键词:Nanofluid ; Hematite ; Magnetorheology ; Magnetic field ; Fractal dimension ; Thixotropy
  • 刊名:Rheologica Acta
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:54
  • 期:9-10
  • 页码:757-769
  • 全文大小:1,901 KB
  • 参考文献:Akoh H, Tsukasaki Y, Yatsuya S, Tasaki A (1978) Magnetic properties of ferromagnetic ultrafine particles prepared by vacuum evaporation on running oil substrate. J Cryst Growth 45:495-00CrossRef
    Anoop KB, Kabelac S, Sundararajan T, Das SK (2009) Rheological and flow characteristics of nanofluids: influence of electroviscous effects and particle agglomeration. J Appl Phys 106
    Batchelor GK (1977) Effect of Brownian-motion on bulk stress in a suspension of spherical-particles. J Fluid Mech 83:97-17CrossRef
    Bhowmik RN, Saravanan A (2010) Surface magnetism, Morin transition, and magnetic dynamics in antiferromagnetic α-Fe2O3 (hematite) nanograins. J Appl Phys 107
    Binu KG, Shenoy BS, Rao DS, Pai R (2014) Static characteristics of a fluid film bearing with TiO2 based nanolubricant using the modified Krieger-Dougherty viscosity model and couple stress model. Tribol Int 75:69-9CrossRef
    B?dker F, M?rup S (2000) Size dependence of the properties of hematite nanoparticles. Europhys Lett 52:217CrossRef
    Bombard AJF, De Vicente J (2012) Thin-film rheology and tribology of magnetorheological fluids in isoviscous-EHL contacts. Tribol Lett 47:149-62CrossRef
    Bossis G, Lacis S, Meunier A, Volkova O (2002) Magnetorheological fluids. J Magn Magn Mater 252:224-28CrossRef
    Bouhamed H, Baklouti S, Bossis G (2013) Interaction of PMANa+ with ZnO and Al2O3 nanopowders: adsorption, stability and rheological behavior. Powder Technol 245:273-80CrossRef
    Cabaleiro D, Pastoriza-Gallego M, Gracia-Fernández C, Pi?eiro M, Lugo L (2013a) Rheological and volumetric properties of TiO2-ethylene glycol nanofluids. Nanoscale Res Lett 8:1-3CrossRef
    Cabaleiro D, Pastoriza-Gallego MJ, Pi?eiro MM, Lugo L (2013b) Characterization and measurements of thermal conductivity, density and rheological properties of zinc oxide nanoparticles dispersed in (ethane-1,2-diol; water) mixture. J Chem Thermodyn 58:405-15CrossRef
    Chen LC (2009) Investigation on morphology measurement and evaluation of TiO2 nanoparticles synthesized by SANSS. J Alloy Compd 483:366-70CrossRef
    Chen H, Ding Y, Tan C (2007) Rheological behaviour of nanofluids. New J Phys 9:367CrossRef
    Colombo C, Palumbo G, Ceglie A, Angelico R (2012) Characterization of synthetic hematite (α-Fe2O3) nanoparticles using a multi-technique approach. J Colloid Interface Sci 374:118-26CrossRef
    Darezereshki E, Bakhtiari F, Alizadeh M, Behrad Vakylabad A, Ranjbar M (2012) Direct thermal decomposition synthesis and characterization of hematite (α-Fe2O3) nanoparticles. Mater Sci Semicond Process 15:91-7CrossRef
    Das SK, Choi SUS, Yu W, Pradeep T (2008) Nanofluids: science and technology. John Wiley, New York
    De Vicente J, Berli CLA (2013) Aging, rejuvenation, and thixotropy in yielding magnetorheological fluids. Rheol Acta 52:467-83CrossRef
    De Vicente J, Ramírez J (2007) Effect of friction between particles in the dynamic response of model magnetic structures. J Colloid Interface Sci 316:867-76CrossRef
    De Vicente J, Klingenberg DJ, Hidalgo-Alvarez R (2011a) Magnetorheological fluids: a review. Soft Matter 7:3701-710CrossRef
    De Vicente J, Ruiz-López JA, Andablo-Reyes E, Segovia-Gutírrez JP, Hidalgo-Alvarez R (2011b) Squeeze flow magnetorheology. J Rheol 55:753-79CrossRef
    Díaz-Guerra C, Pérez L, Piqueras J, Chioncel MF (2009) Magnetic transitions in α-Fe2O3 nanowires. J Appl Phys 106
    Dougherty IMKTJ (1959) A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans Soc Rheol 3:137-2CrossRef
    Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78:718-20CrossRef
    Einstein A (1905) über die von der molekularkinetischen theorie der w?rme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Ann Phys 322:549-60CrossRef
    Felicia LJ, Philip J (2013) Probing of field-induced structures and tunable rheological properties of surfactant capped magnetically polarizable nanofluids. Langmuir 29:110-20CrossRef
    Felicia LJ, Philip J (2014) Magnetorheological properties of a magnetic nanofluid with dispersed carbon nanotubes. Phys Rev E 89:022310CrossRef
    Ghadimi A, Saidur R, Metselaar HSC (2011) A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Tran 54:4051-068CrossRef
    Goodwin JW (2003) Colloids and Interfaces with surfactants and polymers—an introduction. Wiley, Chinchester
    Hong TK, Yang HS, Choi CJ (2005) Study of the enhanced thermal conductivity of Fe nanofluids. J Appl phys 97
    Hosseini SM, Ghasemi E, Fazlali A, Henneke DE (2012) The effect of nanoparticle concentration on the rheological properties of paraffin-based Co3O4 ferrofluids. J Nanopart Res 14:7CrossRef
    Jo B, Banerjee D (2014) Viscosity measurements of multi-walled carbon nanotubes-based high temperature nanofluids. Mater
  • 作者单位:Jésica Calvo-Bravo (1)
    David Cabaleiro (1)
    Manuel M. Pi?eiro (1)
    Luis Lugo (1)

    1. Departamento de Física Aplicada, Facultade de Ciencias, Universidade de Vigo, E-36310, Vigo, Spain
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Characterization and Evaluation Materials
    Polymer Sciences
    Mechanical Engineering
    Soft Matter and Complex Fluids
    Food Science
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1435-1528
文摘
The study of nanofluids represents an innovative research area with remarkable development. Properties of ferric magnetic nanofluids, also denoted as ferrofluids, under the influence of an external magnetic field have attracted increasing attention. A set-up for performing rheological and magnetorheological tests of propylene glycol-based hematite (α-Fe203) nanofluids is presented. The nanoparticle concentration dependence of the magnetorheological properties of this nanofluid was analysed at 303.15 K, ranging from 0.2 to 6.18 vol%, while external magnetic fields up to 0.7 T were applied. The rheological and magnetorheological experiments were performed using a rotational Physica MCR 101 rheometer, (Anton Paar), which is equipped with a magnetorheological device (MRD 170/1T) to control the magnetic flux density. A detailed study about the thixotropic behaviour of the samples as well as viscosity curves of magnetization and demagnetization responses, an analysis of the fractal dimension of the aggregates and conclusions about the magnetic field effect on the size of formed aggregates as a function of concentration has been developed in this work. Rheological tests show that the nanofluid studied presents non-Newtonian shear thinning, thixotropic and viscoelastic behaviour. Finally, the magnetic saturation of the material has been studied. Keywords Nanofluid Hematite Magnetorheology Magnetic field Fractal dimension Thixotropy

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700