Drug-Eluting Stent Design is a Determinant of Drug Concentration at the Endothelial Cell Surface
详细信息    查看全文
  • 作者:Taewon Seo ; Antoine Lafont ; Sun-Young Choi…
  • 关键词:Drug ; eluting stent ; Endothelial wound healing ; Convection–diffusion ; Wall shear stress ; Flow disturbance ; Computational simulations
  • 刊名:Annals of Biomedical Engineering
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:44
  • 期:2
  • 页码:302-314
  • 全文大小:1,266 KB
  • 参考文献:1.Albuquerque, M. C., C. M. Waters, U. Savla, H. W. Schnaper, and A. S. Flozak. Shear stress enhances human endothelial cell wound closure in vitro. Am. J. Physiol. 279:H293–H302, 2000.
    2.Asakura, T., and T. Karino. Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ. Res. 66:1045–1066, 1990.CrossRef PubMed
    3.Balossino, R., F. Gervaso, F. Migliavacca, and G. Dubini. Effects of different stent designs on local hemodynamics in stented arteries. J. Biomech. 41:1053–1061, 2008.CrossRef PubMed
    4.Barakat, A. I. and Cheng, E. T. Numerical simulation of fluid mechanical disturbance induced by intravascular stents. In: Proceedings of the 11th international conference on mechanical, medicine and biology, pp. 33–36, 2000.
    5.Berry, J. L., A. Santamarina, J. E. Moore, S. Roychowdhury, and W. D. Routh. Experimental and computational evaluation of coronary stent. Ann. Biomed. Eng. 28:386–398, 2000.CrossRef PubMed
    6.Bozsak, F., J. Chomaz, and A. I. Barakat. Modeling transport of drugs eluted from stents: physical phenomena driving drug distribution in the arterial wall. Biomech. Model. Mechanobiol. 13:327–347, 2014.CrossRef PubMed
    7.Camenzind, E. Treatment of in-stent restenosis—back to the future? N. Engl. J. Med. 355:2149–2151, 2006.CrossRef PubMed
    8.Coppola, G., and C. Caro. Arterial geometry, flow pattern, wall shear and mass transport: potential physiological significance. J. R. Soc. Interface 6:519–528, 2009.PubMedCentral CrossRef PubMed
    9.Davies, P. F., A. Remuzzi, E. J. Gordon, C. F. Dewey, and M. A. Gimbrone. Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc. Natl. Acad. Sci. USA 83:2114–2117, 1986.PubMedCentral CrossRef PubMed
    10.Depaola, N., M. A. Gimbrone, P. F. Davies, and C. F. Dewey. Vascular endothelium responds to fluid shear stress gradients. Arterioscler. Thromb. Vasc. Biol. 12:1254–1257, 1992.CrossRef
    11.Duraiswamy, N., J. M. Cesar, R. T. Schoephoerster, and J. E. Moore. Effects of stent geometry on local flow dynamics and resulting platelet deposition in an in vitro model. Biorheology 45:547–561, 2008.PubMed
    12.Duraiswamy, N., R. T. Schoephoerster, and J. E. Moore. Comparison of near-wall hemodynamic parameters in stented artery models. J. Biomech. Eng. 131:061006, 2009.PubMedCentral CrossRef PubMed
    13.Finn, A. V., G. Nakazawa, M. Joner, F. D. Kolodgie, E. K. Mont, H. K. Gold, and R. Virmani. Vascular responses to drug eluting stents: importance of delayed healing. Arterioscler. Thromb. Vasc. Biol. 27:1500–1510, 2007.CrossRef PubMed
    14.Gerbeau, J., M. Vidrascu, and P. Frey. Fluid-structure interaction in blood flows on geometries based on medical imaging. Compos. Struct. 83:155–165, 2005.CrossRef
    15.Gojova, A., and A. I. Barakat. Vascular endothelial wound closure under shear stress: role of membrane fluidity and flow-sensitive channels. J. Appl. Physiol. 98:2355–2362, 2005.CrossRef PubMed
    16.Hsu, P. P., S. Li, Y. S. Li, S. Usami, A. Ratcliffe, X. Wang, and S. Chien. Effects of flow patterns on endothelial cell migration into a zone of mechanical denudation. Biochem. Biophys. Res. Commun. 285:751–759, 2001.CrossRef PubMed
    17.Jimenez, J. M., and P. F. Davies. Hemodynamically driven stent strut design. Ann. Biomed. Eng. 37:1483–1494, 2009.PubMedCentral CrossRef PubMed
    18.Jin, S., J. Oshinski, and D. P. Giddens. Effects of wall motion and compliance on flow patterns in the ascending aorta. J. Biomech. Eng. 125:347–354, 2005.CrossRef
    19.Kastrati, A., J. Mehilli, J. Dirschinger, F. Dotzer, H. Schühlen, F. J. Neumann, M. Fleckenstein, C. Pfafferott, M. Seyfarth, and A. Schömig. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO) trial. Circulation 103:2816–2821, 2001.CrossRef PubMed
    20.Kastrati, A., J. Mehilli, J. Dirschinger, J. Pache, K. Ulm, H. Schühlen, M. Seyfarth, C. Schmitt, R. Blasini, F. J. Neumann, and A. Schömig. Restenosis after coronary placement of various stent types. Am. J. Cardiol. 87:34–39, 2001.CrossRef PubMed
    21.Kim, H. J., I. E. Vignon-Clmentel, J. S. Coogan, C. A. Figueroa, J. E. Jansen, and C. A. Taylor. Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann. Biomed. Eng. 38:3195–3209, 2010.CrossRef PubMed
    22.LaDisa, J. F., L. E. Olson, I. Guler, D. A. Hettrick, J. R. Kersten, D. C. Warltier, and P. S. Pagel. Stent design properties and deployment ratio influence indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery. J. Appl. Physiol. 97:424–430, 2004.CrossRef PubMed
    23.Luscher, T. F., J. Steffel, F. R. Eberli, M. Joner, G. Nakazawa, F. C. Tanner, and R. Virmani. Drug-eluting stent and coronary thrombosis: biological mechanisms and clinical implications. Circulation 115:1051–1058, 2007.CrossRef PubMed
    24.McGinty, S. A decade of modelling drug release from arterial stents. Math. Biosci. 257:80–90, 2014.CrossRef PubMed
    25.McGinty, S., S. McKee, R. M. Wadsworth, and C. McCormick. Modelling drug-eluting stents. Math. Med. Biol. 28:1–29, 2011.CrossRef PubMed
    26.McGinty, S., T. N. Vo Tuoi, M. Meere, and Mc Cormick C. McKee. Some design considerations for polymer-free drug-eluting stents: a mathematical approach. Acta Biomater. 18:213–225, 2015.CrossRef PubMed
    27.Miyazaki, S., Y. Hiasa, T. Takahashi, Y. Yano, T. Minami, N. Murakami, M. Mizobe, Y. Tobetto, T. Nakagawa, P. M. Chen, R. Ogura, H. Miyajima, K. Yuba, S. Hosokawa, K. Kishi, and R. Ohtani. In vivo optical coherence tomography of very late drug-eluting stent thrombosis compared with late in-stent restenosis. Circ. J. 76:390–398, 2012.CrossRef PubMed
    28.Mongrain, R., I. Faik, R. L. Leask, J. R. Cabau, E. Larose, and O. F. Bertrand. Effects of diffusion coefficients and struts apposition using numerical simulations for drug eluting coronary stents. J. Biomech. Eng. 129:733–742, 2007.CrossRef PubMed
    29.Morton, A. C., D. Crossman, and J. Gunn. The influence of physical stent parameters upon restenosis. Pathol. Biol. 52:196–205, 2004.CrossRef PubMed
    30.Moses, J. W., M. B. Leon, J. J. Popma, P. J. Fitzgerald, D. R. Holmes, C. O’Shaughnessy, R. P. Caputo, D. J. Kereiakes, D. O. Williams, P. S. Teirstein, J. L. Jaeger, and R. E. Kuntz. Sirolimus-eluting stent versus standard stents in patients with stenosis in a native coronary artery. N. Engl. J. Med. 349:1315–1323, 2003.CrossRef PubMed
    31.Ong, A. T., E. P. McFadden, E. Regar, P. P. de Jaegere, R. T. van Domburg, and P. W. Serruys. Late angiographic stent thrombosis (LAST) events with drug-eluting stents. J. Am. Coll. Cardiol. 45:2088–2092, 2005.CrossRef PubMed
    32.Pache, J., J. Kastrati, H. Mehilli, H. Schuhlen, F. Dotzer, J. Hausleiter, M. Fleckenstein, F. J. Newmann, U. Sattleburger, C. Schmitt, M. Muller, J. Dirschinger, and A. Schömig. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO-2) trial. J. Am. Coll. Cardiol. 41:1283–1288, 2003.CrossRef PubMed
    33.Pant, S., N. W. Bressloff, A. I. J. Forrester, and N. Curzen. The influence of strut-connectors in stented vessels: a comparison of pulsatile flow through five coronary stents. Ann. Biomed. Eng. 38:1893–1907, 2010.CrossRef PubMed
    34.Parry, T. J., R. Brosius, R. Thyagarajan, D. Carter, D. Argentieri, R. Falotico, and J. Siekierka. Drug-eluting stents: sirolimus and paclitaxel differentially affect cultured cells and injured arteries. Eur. J. Pharmacol. 524:19–29, 2005.CrossRef PubMed
    35.Pfisterer, M., H. P. Brunner-La Rocca, P. T. Buser, P. Rickenbacher, P. Hunziker, C. Mueller, R. Jeger, F. Bader, S. Osswald, and C. Kaiser. Late clinical events after clopidogrel discontinuation may limit the benefit of drug-eluting stents: an observational study of drug-eluting versus bare-metal stents. J. Am. Coll. Cardiol. 48:2584–2591, 2006.CrossRef PubMed
    36.Pontrelli, G., and F. de Monte. A multi-layer porous wall model for coronary drug-eluting stents. Int. J. Heat Mass Transf. 53:3629–3637, 2010.CrossRef
    37.Rajamohan, D., R. K. Banerjee, L. H. Back, A. A. Ibrahim, and M. A. Jog. Developing pulsatile flow in a deployed coronary stent. J. Biomech. Eng. 128:347–359, 2006.CrossRef PubMed
    38.Rogers, C., and E. R. Edelman. Endovascular stent design dictates experimental restenosis and thrombosis. Circulation 91:2995–3001, 1995.CrossRef PubMed
    39.Rogers, C., C. Parikh, P. Seifert, and E. R. Edelman. Endogenous sell seeding—remnant endothelium after stenting enhances vascular repair. Circulation 94:2909–2914, 1996.CrossRef PubMed
    40.Sarno, G., B. Lagerqvist, O. Fröbert, J. Nilsson, G. Olivecrona, E. Omerovic, N. Saleh, D. Venetzanos, and S. James. Lower risk of stent thrombosis and restenosis with unrestricted use of ‘new-generation’ drug-eluting stents: a report from the nationwide Swedish coronary angiography and angioplasty registry (SCAAR). Eur. Heart J. 33:606–613, 2012.CrossRef PubMed
    41.Seo, T. W., L. G. Schachter, and A. I. Barakat. Computational study of fluid mechanical disturbance induced by endovascular stents. Ann. Biomed. Eng. 33:444–456, 2005.CrossRef PubMed
    42.Sousa, J. E., M. A. Costa, A. C. Abizaid, B. J. Rensing, A. S. Abizaid, L. F. Tanajura, K. Kozuma, G. V. Langenhove, A. G. Sousa, R. Falotico, J. Jaeger, J. J. Popma, and P. W. Serruys. Sustained suppression of neointimal proliferation by sirolimus-eluting stents. Circulation 104:2007–2011, 2001.CrossRef PubMed
    43.Tezduyar, T. E., S. Sathe, M. Schwaab, and B. S. Conklin. Arterial fluid mechanics modeling with stabilized space-time fluid-structure interaction technique. Int. J. Numer. Methods Fluids 57:601–629, 2008.CrossRef
    44.Tzafriri, A. R., A. D. Levin, and E. R. Edelman. Diffusion-limited binding explains binary dose response for local arterial and tumour drug delivery. Cell Prolif. 42:348–363, 2009.PubMedCentral CrossRef PubMed
    45.Van der Heiden, K., F. J. Gijsen, A. Narracott, S. Hsiao, I. Halliday, J. Gunn, J. J. Wentzel, and P. C. Evans. The effects of stenting on shear stress: relevance to endothelial injury and repair. Cardiovasc. Res. 99:269–275, 2013.CrossRef PubMed
    46.Wentzel, J. J., R. Krams, J. C. H. Schuurbiers, J. A. Oomen, J. Kloet, W. J. van Der Giessen, P. W. Serruys, and C. J. Slager. Relationship between neointimal thickness and shear stress after Wallstent implantation in human coronary arteries. Circulation 103:1740–1745, 2001.CrossRef PubMed
  • 作者单位:Taewon Seo (1)
    Antoine Lafont (2) (3)
    Sun-Young Choi (4)
    Abdul I. Barakat (3)

    1. School of Mechanical Engineering, Andong National University, Andong, Korea
    2. Department of Cardiology, European Georges Pompidou Hospital, University of Paris-Descartes, Paris, France
    3. Hydrodynamics Laboratory (LadHyX), CNRS UMR7646, Ecole Polytechnique, Route de Saclay, 91128, Palaiseau Cedex, France
    4. Department of Radiology and Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, Korea
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Biomedicine
    Biomedical Engineering
    Biophysics and Biomedical Physics
    Mechanics
    Biochemistry
  • 出版者:Springer Netherlands
  • ISSN:1573-9686
文摘
Although drug-eluting stents (DES) have greatly reduced arterial restenosis, there are persistent concerns about stent thrombosis. DES thrombosis is attributable to retarded vascular re-endothelialization due to both stent-induced flow disturbance and the inhibition by the eluted drug of endothelial cell proliferation and migration. The present computational study aims to determine the effect of DES design on both stent-induced flow disturbance and the concentration of eluted drug at the arterial luminal surface. To this end, we consider three closed-cell stent designs that resemble certain commercial stents as well as three “idealized” stents that provide insight into the impact of specific characteristics of stent design. To objectively compare the different stents, we introduce the Stent Penalty Index (SPI), a dimensionless quantity whose value increases with both the extent of flow disturbance and luminal drug concentration. Our results show that among the three closed-cell designs studied, wide cell designs lead to lower SPI and are thus expected to have a less adverse effect on vascular re-endothelialization. For the idealized stent designs, a spiral stent provides favorable SPI values, whereas an intertwined ring stent leads to an elevated SPI. The present findings shed light onto the effect of stent design on the concentration of the eluted drug at the arterial luminal surface, an important consideration in the assessment of DES performance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700