Progress on mid-IR graphene photonics and biochemical applications
详细信息    查看全文
  • 作者:Zhenzhou Cheng ; Changyuan Qin ; Fengqiu Wang ; Hao He…
  • 关键词:mid ; infrared (mid ; IR) ; graphene ; lasers ; photodetectors ; optical sensing and sensors ; photodynamic therapy ; spectroscopy ; fluorescence and luminescence
  • 刊名:Frontiers of Optoelectronics in China
  • 出版年:2016
  • 出版时间:June 2016
  • 年:2016
  • 卷:9
  • 期:2
  • 页码:259-269
  • 全文大小:1,115 KB
  • 参考文献:1.Schliesser A, Picqué N, Hänsch T W. Mid-infrared frequency combs. Nature Photonics, 2012, 6(7): 440–449CrossRef
    2.Jackson S D. Towards high-power mid-infrared emission from a fibre laser. Nature Photonics, 2012, 6(7): 423–431CrossRef
    3.Martinez A, Sun Z. Nanotube and graphene saturable absorbers for fire lasers. Nature Photonics, 2013, 7(11): 842–845CrossRef
    4.Keuleyan S, Lhuillier E, Brajuskovic V, Guyot-Sionnest P. Midinfrared HgTe colloidal quantum dot photodetectors. Nature Photonics, 2011, 5(8): 489–493CrossRef
    5.Novoselv K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669CrossRef
    6.Bonaccorso F, Sun Z, Hasan T, Ferrari A C. Graphene photonics and optoelectronics. Nature Photonics, 2010, 4(9): 611–622CrossRef
    7.Xia F, Yan H, Avouris P. The interaction of light and graphene: basics, devices, and applications. Proceedings of the IEEE, 2013, 101(7): 1717–1731CrossRef
    8.Ostojic G N, Zaric S, Kono J, Strano M S, Moore V C, Hauge R H, Smalley R E. Interband recombination dynamics in resonantly excited single-walled carbon nanotubes. Physical Review Letters, 2004, 92(11): 117402CrossRef
    9.Dawlaty J M, Shivaraman S, Chandrashekhar M, Rana F, Spencer M G. Measurement of ultrafast carrier dynamics in epitaxial graphene. Applied Physics Letters, 2008, 92(4): 042116CrossRef
    10.Hasan T, Sun Z, Wang F, Bonaccorso F, Tan P H, Rozhin A G, Ferrari A C. Nanotube polymer composites for ultrafast photonics. Advanced Materials, 2009, 21(38-39): 3874–3899CrossRef
    11.Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z X, Loh K P, Tang D Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Advanced Functional Materials, 2009, 19(19): 3077–3083CrossRef
    12.Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F, Bonaccorso F, Basko D M, Ferrari A C. Graphene mode-locked ultrafast laser. ACS Nano, 2010, 4(2): 803–810CrossRef
    13.Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X. A graphene-based broadband optical modulator. Nature, 2011, 474(7349): 64–67CrossRef
    14.Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P, Xia F. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nature Photonics, 2013, 7(5): 394–399CrossRef
    15.Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotechnology, 2011, 6(10): 630–634CrossRef
    16.Wang Y, Li Z, Wang J, Li J, Lin Y. Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends in Biotechnology, 2011, 29(5): 205–212CrossRef
    17.Feng L, Liu Z. Graphene in biomedicine: opportunities and challenges. Nanomedicine, 2011, 6(2): 317–324CrossRef
    18.Shen H, Zhang L, Liu M, Zhang Z. Biomedical applications of graphene. Theranostics, 2012, 2(3): 283–294MathSciNet CrossRef
    19.Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine: theranostic applications. Chemical Society Reviews, 2013, 42(2): 530–547CrossRef
    20.Wang F, Torrisi F, Jiang Z, Popa D, Hasan T, Sun Z, Cho W, Ferrari A C. Graphene passively Q-switched two-micron fiber lasers. In: Proceedings of Conference of Lasers and Electro-Optics., 2012, 1–2
    21.Zhang M, Kelleher E J, Torrisi F, Sun Z, Hasan T, Popa D, Wang F, Ferrari A C, Popov S V, Taylor J R. Tm-doped fiber laser modelocked by graphene-polymer composite. Optics Express, 2012, 20(22): 25077–25084CrossRef
    22.Ma J, Xie G Q, Lv P, Gao W L, Yuan P, Qian L J, Yu H H, Zhang H J, Wang J Y, Tang D Y. Graphene mode-locked femtosecond laser at 2 mm wavelength. Optics Letters, 2012, 37(11): 2085–2087CrossRef
    23.Lagatsky A A, Sun Z, Kulmala T S, Sundaram R S, Milana S, Torrisi F, Antipov O L, Lee Y, Ahn J H, Brown C T, Sibbett W, Ferrari A C. 2 mm solid-state laser mode-locked by single-layer graphene. Applied Physics Letters, 2013, 102(1): 013113CrossRef
    24.Cizmeciyan M N, Kim J W, Bae S, Hong B H, Rotermund F, Sennaroglu A. Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm. Optics Letters, 2013, 38(3): 341–343CrossRef
    25.Wang Q, Teng H, Zou Y, Zhang Z, Li D, Wang R, Gao C, Lin J, Guo L, Wei Z. Graphene on SiC as a Q-switcher for a 2 mm laser. Optics Letters, 2012, 37(3): 395–397CrossRef
    26.Tolstik N, Okhotnikov O, Sorokin E, Sorokina I T. Femtosecond Cr: ZnS laser at 2.35 µm mode-locked by carbon nanotubes. Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 8959: 89591A
    27.Wei C, Zhu X, Wang F, Xu Y, Balakrishnan K, Song F, Norwood R A, Peyghambarian N. Graphene Q-switched 2.78 mm Er3+-doped fluoride fiber laser. Optics Letters, 2013, 38(17): 3233–3236CrossRef
    28.Zhu G, Zhu X, Wang F, Xu S, Li Y, Guo X, Balakrishnan K, Norwood R A, Peyghambarian N. Graphene mode-locked fiber laser at 2.8 mm. Photonics Technology Letters, 2016, 28(1): 7–10CrossRef
    29.Mueller T, Xia F, Avouris P. Graphene photodetectors for highspeed optical communications. Nature Photonics, 2010, 4(5): 297–301CrossRef
    30.Wang X, Cheng Z, Xu K, Tsang H K, Xu J B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nature Photonics, 2013, 7(11): 888–891CrossRef
    31.Cheng Z, Wang J, Xu K, Tsang H K, Shu C. Graphene on silicon-onsapphire waveguide photodetectors. In: Proceedings of Laser and Electro-Optics(CLEO), 2015
    32.Liu C H, Chang Y C, Norris T B, Zhong Z. Graphene photodetectors with ultra
    oadband and high responsivity at room temperature. Nature Nanotechnology, 2014, 9(4): 273–278CrossRef
    33.Zhang B Y, Liu T, Meng B, Li X, Liang G, Hu X, Wang Q J. Broadband high photoresponse from pure monolayer graphene photodetector. Nature Communications, 2013, 4: 1811CrossRef
    34.Yao Y, Shankar R, Rauter P, Song Y, Kong J, Loncar M, Capasso F. High-responsivity mid-infrared graphene detectors with antennaenhanced photocarrier generation and collection. Nano Letters, 2014, 14(7): 3749–3754CrossRef
    35.Hsu A L, Herring P K, Gabor N M, Ha S, Shin Y C, Song Y, Chin M, Dubey M, Chandrakasan A P, Kong J, Jarillo-Herrero P, Palacios T. Graphene-based thermopile for thermal imaging applications. Nano Letters, 2015, 15(11): 7211–7216CrossRef
    36.Badioli M, Woessner A, Tielrooij K J, Nanot S, Navickaite G, Stauber T, García de Abajo F J, Koppens F H L. Phonon-mediated mid-infrared photoresponse of graphene. Nano Letters, 2014, 14(11): 6374–6381CrossRef
    37.Wang J, Cheng Z, Chen Z, Xu J B, Tsang H K, Shu C. Graphene photodetector integrated on silicon nitride waveguide. Journal of Applied Physics, 2015, 117(14): 144504CrossRef
    38.Yan J, Kim M H, Elle J A, Sushkov A B, Jenkins G S, Milchberg H M, Fuhrer M S, Drew H D. Dual-gated bilayer graphene hotelectron bolometer. Nature Nanotechnology, 2012, 7(7): 472–478CrossRef
    39.Freitag M, Low T, Martin-Moreno L, Zhu W, Guinea F, Avouris P. Substrate-sensitive mid-infrared photoresponse in graphene. ACS Nano, 2014, 8(8): 8350–8356CrossRef
    40.Cheng Z, Tsang H K, Wang X, Xu K, Xu J B. In-plane optical absorption and free carrier absorption in graphene-on-silicon waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(1): 4400106
    41.Cheng Z, Wang J, Zhu B, Xu K, Zhou W, Tsang H K, Shu C. Graphene absorption enhancement using silicon slot waveguides. In: Proceedings of Photonics Conference (IPC) IEEE., 2015, 186–187
    42.Wang J, Cheng Z, Shu C, Tsang H K. Optical absorption in graphene-on-silicon nitride microring resonator. IEEE Photonics Technology Letters, 2015, 27(16): 1765–1767CrossRef
    43.Cheng Z, Chen X, Wong C Y, Xu K, Fung C K, Chen YM, Tsang H K. Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide. Optics Letters, 2012, 37(7): 1217–1219CrossRef
    44.Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotechnology, 2011, 6(10): 630–634CrossRef
    45.Fang Z, Wang Y, Schlather A E, Liu Z, Ajayan P M, de Abajo F J, Nordlander P, Zhu X, Halas N J. Active tunable absorption enhancement with graphene nanodisk arrays. Nano Letters, 2014, 14(1): 299–304CrossRef
    46.Brar V W, Jang M S, Sherrott M, Lopez J J, Atwater H A. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. Nano Letters, 2013, 13(6): 2541–2547CrossRef
    47.Abbas A N, Liu G, Liu B, Zhang L, Liu H, Ohlberg D, Wu W, Zhou C. Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography. ACS Nano, 2014, 8(2): 1538–1546CrossRef
    48.Li Y, Yan H, Farmer D B, Meng X, Zhu W, Osgood RM, Heinz T F, Avouris P. Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers. Nano Letters, 2014, 14(3): 1573–1577CrossRef
    49.Rodrigo D, Limaj O, Janner D, Etezadi D, García de Abajo F J, Pruneri V, Altug H. Mid-infrared plasmonic biosensing with graphene. Science, 2015, 349(6244): 165–168CrossRef
    50.Loh K P, Bao Q, Eda G, Chhowalla M. Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry, 2010, 2(12): 1015–1024CrossRef
    51.Sun X, Liu Z, Welsher K, Robinson J T, Goodwin A, Zaric S, Dai H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Research, 2008, 1(3): 203–212CrossRef
    52.Feng L, Yang X, Shi X, Tan X, Peng R, Wang J, Liu Z. Polyethylene glycol and polyethylenimine dual-functionalized nano-graphene oxide for photothermally enhanced gene delivery. Small, 2013, 9(11): 1989–1997CrossRef
    53.Liu K, Zhang J J, Cheng F F, Zheng T T, Wang C, Zhu J J. Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. Journal of Materials Chemistry, 2011, 21(32): 12034–12040CrossRef
    54.Tian B, Wang C, Zhang S, Feng L, Liu Z. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano, 2011, 5(9): 7000–7009CrossRef
    55.Ma X, Tao H, Yang K, Feng L, Cheng L, Shi X, Li Y, Guo L, Liu Z. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Research, 2012, 5(3): 199–212CrossRef
    56.Yang K, Zhang S, Zhang G, Sun X, Lee S T, Liu Z. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Letters, 2010, 10(9): 3318–3323CrossRef
    57.Huang P, Xu C, Lin J, Wang C, Wang X, Zhang C, Zhou X, Guo S, Cui D. Folic acid-conjugated graphene oxide loaded with photo-sensitizers for targeting photodynamic therapy. Theranostics, 2011, 1: 240–250CrossRef
    58.Li J L, Hou X L, Bao H C, Sun L, Tang B, Wang J F, Wang X G, Gu M. Graphene oxide nanoparticles for enhanced photothermal cancer cell therapy under the irradiation of a femtosecond laser beam. Journal of Biomedical Materials Research. Part A, 2014, 102(7): 2181–2188CrossRef
    59.Robinson J T, Tabakman S M, Liang Y, Wang H, Casalongue H S, Vinh D, Dai H. Ultrasmall reduced graphene oxide with high nearinfrared absorbance for photothermal therapy. Journal of the American Chemical Society, 2011, 133(17): 6825–6831CrossRef
    60.Shi X, Gong H, Li Y, Wang C, Cheng L, Liu Z. Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials, 2013, 34(20): 4786–4793CrossRef
    61.Akhavan O, Ghaderi E, Aghayee S, Fereydooni Y, Talebi A. The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy. Journal of Materials Chemistry, 2012, 22(27): 13773–13781CrossRef
    62.Li M, Yang X, Ren J, Qu K, Qu X. Using graphene oxide high nearinfrared absorbance for photothermal treatment of Alzheimer’s disease. Advanced Materials, 2012, 24(13): 1722–1728CrossRef
    63.Yang K, Wan J, Zhang S, Tian B, Zhang Y, Liu Z. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials, 2012, 33(7): 2206–2214CrossRef
    64.Markovic Z M, Harhaji-Trajkovic L M, Todorovic-Markovic B M, Kepic D P, Arsikin K M, Jovanovic S P, Pantovic A C, Dramicanin M D, Trajkovic V S. In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials, 2011, 32(4): 1121–1129CrossRef
    65.Li J L, Bao H C, Hou X L, Sun L, Wang X G, Gu M. Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy. Angewandte Chemie International Edition, 2012, 51(8): 1830–1834CrossRef
    66.Liu Q, Guo B, Rao Z, Zhang B, Gong J R. Strong two-photoninduced fluorescence from photostable, biocompatible nitrogendoped graphene quantum dots for cellular and deep-tissue imaging. Nano Letters, 2013, 13(6): 2436–2441CrossRef
    67.Qian J, Wang D, Cai F H, Xi W, Peng L, Zhu Z F, He H, Hu ML, He S. Observation of multiphoton-induced fluorescence from graphene oxide nanoparticles and applications in in vivo functional bioimaging. Angewandte Chemie International Edition, 2012, 51(42): 10570–10575CrossRef
    68.Huang J, Zong C, Shen H, Liu M, Chen B, Ren B, Zhang Z. Mechanism of cellular uptake of graphene oxide studied by surfaceenhanced Raman spectroscopy. Small, 2012, 8(16): 2577–2584CrossRef
    69.Liu Z, Guo Z, Zhong H, Qin X, Wan M, Yang B. Graphene oxide based surface-enhanced Raman scattering probes for cancer cell imaging. Physical Chemistry Chemical Physics, 2013, 15(8): 2961–2966CrossRef
    70.Yang K, Hu L, Ma X, Ye S, Cheng L, Shi X, Li C, Li Y, Liu Z. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Advanced Materials, 2012, 24(14): 1868–1872CrossRef
    71.Zaugg C A, Sun Z, Wittwer V J, Popa D, Milana S, Kulmala T S, Sundaram R S, Mangold M, Sieber O D, Golling M, Lee Y, Ahn J H, Ferrari A C, Keller U. Ultrafast and widely tuneable verticalexternal-cavity surface-emitting laser, mode-locked by a grapheneintegrated distributed Bragg reflector. Optics Express, 2013, 21(25): 31548–31559CrossRef
    72.Baylam I, Cizmeciyan M N, Ozharar S, Polat E O, Kocabas C, Sennaroglu A. Femtosecond pulse generation with voltage-controlled graphene saturable absorber. Optics Letters, 2014, 39(17): 5180–5183CrossRef
    73.Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A. Twodimensional material nanophotonics. Nature Photonics, 2014, 8(12): 899–907CrossRef
    74.Qin Z, Xie G, Zhang H, Zhao C, Yuan P, Wen S, Qian L. Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 mm. Optics Express, 2015, 23(19): 24713–24718CrossRef
    75.Youngblood N, Chen C, Koester S J, Li M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nature Photonics, 2015, 9(4): 247–252
  • 作者单位:Zhenzhou Cheng (1)
    Changyuan Qin (1)
    Fengqiu Wang (2)
    Hao He (3)
    Keisuke Goda (1) (4) (5)

    1. Department of Chemistry, University of Tokyo, Tokyo, 113-0033, Japan
    2. School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, China
    3. Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200031, China
    4. Department of Electrical Engineering, University of California, Los Angeles, 90095, USA
    5. Japan Science and Technology Agency, Tokyo, 102-0076, Japan
  • 刊物类别:Engineering
  • 刊物主题:Electronic and Computer Engineering
    Electromagnetism, Optics and Lasers
    Biomedical Engineering
    Chinese Library of Science
  • 出版者:Higher Education Press, co-published with Springer-Verlag GmbH
  • ISSN:2095-2767
文摘
Mid-infrared (mid-IR) (2–20 μm) photonics has numerous chemical and biologic “fingerprint” sensing applications due to characteristic vibrational transitions of molecules in the mid-IR spectral region. Unfortunately, compared to visible light and telecommunication band wavelengths, photonic devices and applications have been difficult to develop at mid-IR wavelengths because of the intrinsic limitation of conventional materials. Breaking a new ground in the mid-IR science and technology calls for revolutionary materials. Graphene, a single atom layer of carbon arranged in a honey-comb lattice, has various promising optical and electrical properties because of its linear dispersion band structure and zero band gap features. In this review article, we discuss recent research developments on mid-IR graphene photonics, in particular ultrafast lasers and photodetectors. Graphene-photonics-based biochemical applications, such as plasmonic sensing, photodynamic therapy, and florescence imaging are also reviewed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700