Volatile chemical and carotenoid profiles in watermelons [Citrullus vulgaris (Thunb.) Schrad (Cucurbitaceae)] with different flesh colors
详细信息    查看全文
  • 作者:Cuihua Liu (1)
    Hongyan Zhang (1)
    Zhaoyi Dai (2)
    Xi Liu (3)
    Yue Liu (1)
    Xiuxin Deng (1)
    Feng Chen (4)
    Juan Xu (1) xujuan@mail.hzau.edu.cn
  • 关键词:watermelon &#8211 ; carotenoid &#8211 ; flavor &#8211 ; HPLC &#8211 ; GCMS
  • 刊名:Food Science and Biotechnology
  • 出版年:2012
  • 出版时间:April 2012
  • 年:2012
  • 卷:21
  • 期:2
  • 页码:531-541
  • 全文大小:488.1 KB
  • 参考文献:1. Britton G, Liaaen-Jensen S, Pfander H. Carotenoids Handbook. 1st ed. Birkh盲user, Basel, Germany. p. 676 (2004)
    2. Grotewold E. The genetics and biochemistry of floral pigments. Annu. Rev. Plant Biol. 57: 761–780 (2006)
    3. Lewinsohn E, Sitrit Y, Bar E, Azulay Y, Ibdah M, Meir A, Yosef E, Zamir D, Tadmor Y. Not just colors-carotenoid degradation as a link between pigmentation and volatile in tomato and watermelon fruit. Trends Food Sci. Tech. 16: 407–415 (2005)
    4. Lewinsohn E, Sitrit Y, Bar E, Azulay Y, Meir A, Zamir D, Tadmor Y. Carotenoid pigmentation affects the volatile composition of tomato and watermelon fruits, as revealed by comparative genetic analyses. J. Agr. Food Chem. 53: 3142–3148 (2005)
    5. Schwartz SH, Tan BC, Gage DA, Zeevaart JA, McCarty DR. Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276: 1872–1874 (1997)
    6. Ibdah M, Azulay Y, Portnoy V, Wasserman B, Bar E, Meir A, Burger Y, Hirschberg J, Schaffer AA, Katzir N, Tadmor Y, Lewinsohn E. Functional characterization of CmCCD1, a carotenoid cleavage dioxygenase from melon. Phytochemistry 67: 1579–1589 (2006)
    7. Huang FC, Horv谩th G, Moln谩rb P, Turcsic E, Delic J, Schraderd J, Sandmanne G, Schmidta H, Schwaba W. Substrate promiscuity of RdCCD1, a carotenoid cleavage oxygenase from Rosa damascena. Phytochemistry 70: 457–464 (2009)
    8. Schwartz SH, Qin X, Loewen MC. The biochemical characterization of two carotenoid cleavage enzymes from arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching. J. Biol. Chem. 279: 46940–46945 (2004)
    9. Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O. MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr. Biol. 14: 1232–1238 (2004)
    10. Bouvier F, Dogbo O, Camara B. Biosynthesis of the food and cosmetic plant pigment bixin (annatto). Science 300: 2089–2091 (2003)
    11. Mahattanatawee K, Rouseff R, Valim MF, Naim M. Identification and volatile impact of norisoprenoids in orange juice. J. Agr. Food Chem. 53: 393–397 (2005)
    12. Iijima Y, Gang DR, Fridman E, Lewinsohn E, Pichersky E. Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiol. 134: 370–379 (2004)
    13. Ilg A, Beyer P, Al-Babili S. Characterization of the rice carotenoid cleavage dioxygenase 1 reveals a novel route for geranial biosynthesis. FEBS J. 276: 736–747 (2009)
    14. Hashizume T, Shimamoto I, Harushima Y, Yui M, Sato T, Imai T, Hirai M. Construction of a linkage map for watermelon (Citrullus lanatus (Thunb.) Matsum and Nakai) using random amplified polymorphic DNA (RAPD). Euphytica 90: 265–273 (1996)
    15. Alexander L, Grierson D. Ethylene biosynthesis and action in tomato: A model for climacteric fruit ripening. J. Exp. Bot. 53: 2039–2055 (2002)
    16. Beaulieu JC, Lea JM. Characterization and semiquantitative analysis of volatiles in seedless watermelon varieties using solid-phase microextraction. J. Agr. Food Chem. 54: 7789–7793 (2006)
    17. Bartolozzi F, Bertazza G, Bassi D, Cristoferi G. Simultaneous determination of soluble sugars and organic acids as their trimethylsilyl derivatives in apricot fruits by gas-liquid chromatography. J. Chromatogr. A 758: 99–107 (1997)
    18. Liu Q, Xu J, Liu YZ, Zhao XL, Deng XX, Guo LL, Gu JQ. A novel bud mutation that confers abnormal patterns of lycopene accumulation in sweet orange fruit (Citrus sinensis L. Osbeck). J. Exp. Bot. 58: 4161–4171 (2007)
    19. Wurst S, Van Dam NM, Monroy F, Biere A, Van der Putten WH. Intraspecific variation in plant defense alters effects of root herbivores on leaf chemistry and aboveground herbivore damage. J. Chem. Ecol. 34: 1360–1367 (2008)
    20. van Den Dool H, Kratz PD. A generalization of the retention index system including linear temperature programmed gas — liquid partition chromatography. J. Chromatogr. A 11: 463–471 (1963)
    21. Beaulieu JC, Grimm CC. Identification of volatile compounds in cantaloupe at various developmental stages using solid phase microextraction. J. Agr. Food Chem. 49: 1345–1352 (2001)
    22. Kemp T, Knavel D, Stoltz L. 3,6-Nonadien-1-ol from Citrullus vulgaris and Cucumus melo. Phytochemistry 13: 1167–1170 (1974)
    23. Arthur CL, Pratt K, Motlagh S, Pawliszyn J, Belardi RP. Environmental analysis of organic compounds in water using solid phase micro extraction. J. High Res. Chromatog. 15: 741–744 (1992)
    24. Giuliano G, Al-Babili S, von Lintig J. Carotenoid oxygenases: Cleave it or leave it. Trends Plant Sci. 8: 145–149 (2003)
    25. Du X, Finn CE, Qian MC. Volatile composition and odor-activity value of thornless ‘Black Diamond’ and ‘Marion’ blackberries. Food Chem. 119: 1127–1134 (2010)
    26. Kloer DP, Schulz GE. Structural and biological aspects of carotenoid cleavage. Cell Mol. Life Sci. 63: 2291–2303 (2006)
    27. Simkin AJ, Schwartz SH, Auldridge M, Taylor MG, Klee HJ. The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles β-ionone, pseudoionone, and geranylacetone. Plant J. 40: 882–892 (2004)
    28. Locas CP, Yaylayan VA. Origin and mechanistic pathways of formation of the parent furan — A food toxicant. J. Agr. Food Chem. 52: 6830–6836 (2004)
    29. Lee HS, Castle WS, Coates GA. Characterization of carotenoids in juice of red navel orange (Cara Cara). J. Agr. Food Chem. 49: 2563–2568 (2001)
    30. de Faria AF, Hasegawa PN, Chagas EA, Pio R, Purgatto E, Mercadante AZ. Cultivar influence on carotenoid composition of loquats from Brazil. J. Food Compos. Anal. 22: 196–203 (2009)
    31. Cross J, Gabai M, Lifshitz A. A comparative study of the carotenoid pigments in juice of Shamouti, Valencia, and Washington oranges, three varieties of Citrus sinensis. Phytochemistry 11: 303–308 (1972)
    32. Qin J, Yeum KJ, Johnson EJ, Krinsky NI, Russell RM, Tang G. Determination of 9-cis β-carotene and ζ-carotene in biological samples. J. Nutr. Biochem. 19: 612–618 (2008)
    33. Schierle J, Bretzel W, B眉hler I, Hess NFD, Steiner K, Sch眉ep W. Content and isomeric ratio of lycopene in food and human blood plasma. Food Chem. 59: 459–465 (1997)
    34. Lee MT, Chen BH. Separation of lycopene and its cis isomers by liquid chromatography. Chromatographia 54: 613–617 (2001)
  • 作者单位:1. Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430-070 Hubei province, China2. Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430-064 Hubei province, China3. 300 Fenglin Road, Xuhui District, Shanghai, 200-032 China4. Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Nutrition
    Food Science
  • 出版者:The Korean Society of Food Science and Technology, co-published with Springer
  • ISSN:2092-6456
文摘
Twelve watermelon [Citrullus vulgaris (Thunb.) Schrad (Cucurbitaceae)] cultivars with different flesh colors were analyzed by HPLC, GC-FID, and GC-MS for their differences in carotenoid, soluble sugar, organic acid, and flavor. Results showed that all-trans violaxanthin, 9-cis-violaxanthin, and luteoxanthin were the main carotenoid esters in watermelons with yellow flesh. However, watermelons with red flesh were rich in all-trans lycopene and their cis-isomers. High concentrations of β-carotene and pro-lycopenes were found in watermelon with orange-yellow flesh. Large variations in the sucrose concentration were observed among the different watermelons. Sucrose and/or fructose were the dominant sugars, while citric acid and malic acid were the main organic acids in watermelon flesh. Limonene was detected in the watermelon flesh of all investigated genotypes. Interestingly, partial correlation analysis of the chemical concentrations revealed 2 significant (p<0.01) positive correlations between β-ionone and β-carotene, and between (E)-geranyl acetone and prolycopenes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700