Overexpression of CREB protein protects from tunicamycin-induced apoptosis in various rat cell types
详细信息    查看全文
  • 作者:András Balogh (1) (2)
    Mária Németh (1) (2)
    Ibolya Koloszár (1) (2)
    Lajos Markó (3)
    Lukasz Przybyl (3)
    Kazushi Jinno (1) (2)
    Csilla Szigeti (1) (2)
    Marija Heffer (4)
    Matthias Gebhardt (3)
    József Szeberényi (1) (2)
    Dominik N. Müller (3)
    Gy?rgy Sétáló Jr. (1) (2)
    Marianna Pap (1) (2)
  • 关键词:Apoptosis ; ER stress ; Unfolded protein response ; Tunicamycin ; CREB ; PC12 cells
  • 刊名:Apoptosis
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:19
  • 期:7
  • 页码:1080-1098
  • 全文大小:
  • 参考文献:1. Smith MH, Ploegh HL, Weissman JS (2011) Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science 334(6059):1086-090 CrossRef
    2. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334(6059):1081-086 CrossRef
    3. Chakrabarti A, Chen AW, Varner JD (2011) A review of the mammalian unfolded protein response. Biotechnol Bioeng 108(12):2777-793 CrossRef
    4. Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397(6716):271-74 CrossRef
    5. Ameri K, Harris AL (2008) Activating transcription factor 4. Int J Biochem Cell Biol 40(1):14-1 CrossRef
    6. Harding HP et al (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11(3):619-33 CrossRef
    7. Lange PS et al (2008) ATF4 is an oxidative stress-inducible, prodeath transcription factor in neurons in vitro and in vivo. J Exp Med 205(5):1227-242 CrossRef
    8. Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13(2):89-02
    9. Wang S, Kaufman RJ (2012) The impact of the unfolded protein response on human disease. J Cell Biol 197(7):857-67 CrossRef
    10. Zhou AX, Tabas I (2013) The UPR in atherosclerosis. Semin Immunopathol 35(3):321-32 CrossRef
    11. Thorp EB (2011) Methods and models for monitoring UPR-associated macrophage death during advanced atherosclerosis. Methods Enzymol 489:277-96 CrossRef
    12. Verfaillie T, Garg AD, Agostinis P (2013) Targeting ER stress induced apoptosis and inflammation in cancer. Cancer Lett 332(2):249-64 CrossRef
    13. Forde JE, Dale TC (2007) Glycogen synthase kinase 3: a key regulator of cellular fate. Cell Mol Life Sci 64(15):1930-944 CrossRef
    14. Jope RS, Johnson GV (2004) The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29(2):95-02 CrossRef
    15. Pap M, Cooper GM (2002) Role of translation initiation factor 2B in control of cell survival by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta signaling pathway. Mol Cell Biol 22(2):578-86 CrossRef
    16. Boyle WJ et al (1991) Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity. Cell 64(3):573-84 CrossRef
    17. Beals CR et al (1997) Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science 275(5308):1930-934 CrossRef
    18. Neal JW, Clipstone NA (2001) Glycogen synthase kinase-3 inhibits the DNA binding activity of NFATc. J Biol Chem 276(5):3666-673 CrossRef
    19. Chu B et al (1996) Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J Biol Chem 271(48):30847-0857 CrossRef
    20. Grimes CA, Jope RS (2001) CREB DNA binding activity is inhibited by glycogen synthase kinase-3 beta and facilitated by lithium. J Neurochem 78(6):1219-232 CrossRef
    21. Tullai JW et al (2007) Glycogen synthase kinase-3 represses cyclic AMP response element-binding protein (CREB)-targeted immediate early genes in quiescent cells. J Biol Chem 282(13):9482-491 CrossRef
    22. Doble BW, Woodgett JR (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116(Pt 7):1175-186 CrossRef
    23. Beurel E, Jope RS (2006) The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol 79(4):173-89 CrossRef
    24. Pap M, Cooper GM (1998) Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-kinase/Akt cell survival pathway. J Biol Chem 273(32):19929-9932 CrossRef
    25. Watcharasit P et al (2002) Direct, activating interaction between glycogen synthase kinase-3beta and p53 after DNA damage. Proc Natl Acad Sci USA 99(12):7951-955 CrossRef
    26. Loberg RD, Vesely E, Brosius FC III (2002) Enhanced glycogen synthase kinase-3beta activity mediates hypoxia-induced apoptosis of vascular smooth muscle cells and is prevented by glucose transport and metabolism. J Biol Chem 277(44):41667-1673 CrossRef
    27. Song L, De Sarno P, Jope RS (2002) Central role of glycogen synthase kinase-3beta in endoplasmic reticulum stress-induced caspase-3 activation. J Biol Chem 277(47):44701-4708 CrossRef
    28. Kotla S et al (2013) The transcription factor CREB enhances interleukin-17A production and inflammation in a mouse model of atherosclerosis. Sci Signal 6(293):ra83 CrossRef
    29. Schauer IE et al (2010) CREB downregulation in vascular disease: a common response to cardiovascular risk. Arterioscler Thromb Vasc Biol 30(4):733-41 CrossRef
    30. Mayr B, Montminy M (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2(8):599-09 CrossRef
    31. Fiol CJ et al (1994) A secondary phosphorylation of CREB341 at Ser129 is required for the cAMP-mediated control of gene expression. A role for glycogen synthase kinase-3 in the control of gene expression. J Biol Chem 269(51):32187-2193
    32. Bullock BP, Habener JF (1998) Phosphorylation of the cAMP response element binding protein CREB by cAMP-dependent protein kinase A and glycogen synthase kinase-3 alters DNA-binding affinity, conformation, and increases net charge. Biochemistry 37(11):3795-809 CrossRef
    33. Scorrano L et al (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300(5616):135-39 CrossRef
    34. Wei MC et al (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292(5517):727-30 CrossRef
    35. Zong WX et al (2003) Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol 162(1):59-9 CrossRef
    36. Hetz C et al (2006) Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science 312(5773):572-76 CrossRef
    37. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116(2):205-19 CrossRef
    38. Ow YP et al (2008) Cytochrome / c: functions beyond respiration. Nat Rev Mol Cell Biol 9(7):532-42 CrossRef
    39. Copeland NG, Cooper GM (1979) Transfection by exogenous and endogenous murine retrovirus DNAs. Cell 16(2):347-56 CrossRef
    40. Balogh A et al (2011) A simple fluorescent labeling technique to study virus adsorption in Newcastle disease virus infected cells. Enzym Microb Technol 49(3):255-59 CrossRef
    41. Jope RS (2003) Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes. Trends Pharmacol Sci 24(9):441-43 CrossRef
    42. Puthalakath H et al (2007) ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129(7):1337-349 CrossRef
    43. Reed JC (2006) Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ 13(8):1378-386 CrossRef
    44. Hübner A et al (2008) Multisite phosphorylation regulates Bim stability and apoptotic activity. Mol Cell 30(4):415-25 CrossRef
    45. Echeverry N et al (2013) Intracellular localization of the BCL-2 family member BOK and functional implications. Cell Death Differ 20(6):785-99 CrossRef
    46. Puthalakath H et al (1999) The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell 3(3):287-96 CrossRef
    47. Grimes CA, Jope RS (2001) The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol 65(4):391-26 CrossRef
    48. Rudolph D et al (1998) Impaired fetal T cell development and perinatal lethality in mice lacking the cAMP response element binding protein. Proc Natl Acad Sci USA 95(8):4481-486 CrossRef
    49. Jean D et al (1998) CREB and its associated proteins act as survival factors for human melanoma cells. J Biol Chem 273(38):24884-4890 CrossRef
    50. Bonni A et al (1999) Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286(5443):1358-362 CrossRef
    51. Walton M et al (1999) CREB phosphorylation promotes nerve cell survival. J Neurochem 73(5):1836-842
    52. Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73(7):2424-428 CrossRef
    53. Hiroi T et al (2005) Protracted lithium treatment protects against the ER stress elicited by thapsigargin in rat PC12 cells: roles of intracellular calcium, GRP78 and Bcl-2. Pharmacogenomics J 5(2):102-11 CrossRef
    54. Takadera T, Yoshikawa R, Ohyashiki T (2006) Thapsigargin-induced apoptosis was prevented by glycogen synthase kinase-3 inhibitors in PC12 cells. Neurosci Lett 408(2):124-28 CrossRef
    55. Takadera T et al (2007) Caspase-dependent apoptosis induced by thapsigargin was prevented by glycogen synthase kinase-3 inhibitors in cultured rat cortical neurons. Neurochem Res 32(8):1336-342 CrossRef
    56. Faundez V, Horng JT, Kelly RB (1997) ADP ribosylation factor 1 is required for synaptic vesicle budding in PC12 cells. J Cell Biol 138(3):505-15 CrossRef
    57. Cleves AE, Clift-O’Grady L, Kelly RB (1997) ATP-dependent formation of free synaptic vesicles from PC12 membranes in vitro. Neurochem Res 22(8):933-40 CrossRef
    58. Rosa P et al (1992) Brefeldin A inhibits the formation of constitutive secretory vesicles and immature secretory granules from the trans-Golgi network. Eur J Cell Biol 59(2):265-74
    59. Chen L, Gao X (2002) Neuronal apoptosis induced by endoplasmic reticulum stress. Neurochem Res 27(9):891-98 CrossRef
    60. Elyaman W, Yardin C, Hugon J (2002) Involvement of glycogen synthase kinase-3beta and tau phosphorylation in neuronal Golgi disassembly. J Neurochem 81(4):870-80 CrossRef
    61. Kogel D et al (2003) The amyloid precursor protein protects PC12 cells against endoplasmic reticulum stress-induced apoptosis. J Neurochem 87(1):248-56 CrossRef
    62. Sasaya H et al (2008) Nicotine suppresses tunicamycin-induced, but not thapsigargin-induced, expression of GRP78 during ER stress-mediated apoptosis in PC12 cells. J Biochem 144(2):251-57 CrossRef
    63. Utsumi T et al (2004) Protective effect of nicotine on tunicamycin-induced apoptosis of PC12h cells. Neurosci Lett 370(2-):244-47 CrossRef
    64. Gonzalez GA, Montminy MR (1989) Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59(4):675-80 CrossRef
    65. Wang QM, Roach PJ, Fiol CJ (1994) Use of a synthetic peptide as a selective substrate for glycogen synthase kinase 3. Anal Biochem 220(2):397-02 CrossRef
    66. Ozaki N, Chuang DM (1997) Lithium increases transcription factor binding to AP-1 and cyclic AMP-responsive element in cultured neurons and rat brain. J Neurochem 69(6):2336-344 CrossRef
    67. Tullai JW, Graham JR, Cooper GM (2011) A GSK-3-mediated transcriptional network maintains repression of immediate early genes in quiescent cells. Cell Cycle 10(18):3072-077 CrossRef
    68. Zhang X et al (2005) Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci USA 102(12):4459-464 CrossRef
    69. Impey S et al (2004) Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 119(7):1041-054 CrossRef
    70. Conkright MD et al (2003) Genome-wide analysis of CREB target genes reveals a core promoter requirement for cAMP responsiveness. Mol Cell 11(4):1101-108 CrossRef
    71. Lemaigre FP, Ace CI, Green MR (1993) The cAMP response element binding protein, CREB, is a potent inhibitor of diverse transcriptional activators. Nucleic Acids Res 21(12):2907-911 CrossRef
    72. Seo HY et al (2010) Endoplasmic reticulum stress-induced activation of activating transcription factor 6 decreases cAMP-stimulated hepatic gluconeogenesis via inhibition of CREB. Endocrinology 151(2):561-68 CrossRef
    73. Wang Y et al (2009) The CREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis. Nature 460(7254):534-37
    74. Wilson BE, Mochon E, Boxer LM (1996) Induction of bcl-2 expression by phosphorylated CREB proteins during B-cell activation and rescue from apoptosis. Mol Cell Biol 16(10):5546-556
    75. Freeland K, Boxer LM, Latchman DS (2001) The cyclic AMP response element in the Bcl-2 promoter confers inducibility by hypoxia in neuronal cells. Brain Res Mol Brain Res 92(1-):98-06 CrossRef
    76. Pugazhenthi S et al (2000) Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J Biol Chem 275(15):10761-0766 CrossRef
    77. Inohara N et al (1998) Mtd, a novel Bcl-2 family member activates apoptosis in the absence of heterodimerization with Bcl-2 and Bcl-XL. J Biol Chem 273(15):8705-710
    78. Hsu SY et al (1997) Bok is a pro-apoptotic Bcl-2 protein with restricted expression in reproductive tissues and heterodimerizes with selective anti-apoptotic Bcl-2 family members. Proc Natl Acad Sci USA 94(23):12401-2406
    79. Maurer U et al (2006) Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell 21(6):749-60
    80. Stewart DP et al (2010) Ubiquitin-dependent degradation of antiapoptotic MCL-1. Mol Cell Biol 30(12):3099-110
    81. Harada H et al (2004) Survival factor-induced extracellular signal-regulated kinase phosphorylates BIM, inhibiting its association with BAX and proapoptotic activity. Proc Natl Acad Sci USA 101(43):15313-5317 CrossRef
    82. Huang DC, Strasser A (2000) BH3-Only proteins-essential initiators of apoptotic cell death. Cell 103(6):839-42
    83. Bouillet P, Strasser A (2002) BH3-only proteins - evolutionarily conserved proapoptotic Bcl-2 family members essential for initiating programmed cell death. J Cell Sci 115(Pt 8):1567-574
    84. O’Connor L et al (1998) Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J 17(2):384-95 CrossRef
    85. Biswas SC, Greene LA (2002) Nerve growth factor (NGF) down-regulates the Bcl-2 homology 3 (BH3) domain-only protein Bim and suppresses its proapoptotic activity by phosphorylation. J Biol Chem 277(51):49511-9516 CrossRef
    86. Ley R et al (2004) Extracellular signal-regulated kinases 1/2 are serum-stimulated “Bim(EL) kinases-that bind to the BH3-only protein Bim(EL) causing its phosphorylation and turnover. J Biol Chem 279(10):8837-847 CrossRef
    87. Luciano F et al (2003) Phosphorylation of Bim-EL by Erk1/2 on serine 69 promotes its degradation via the proteasome pathway and regulates its proapoptotic function. Oncogene 22(43):6785-793 CrossRef
    88. Marani M et al (2004) Role of Bim in the survival pathway induced by Raf in epithelial cells. Oncogene 23(14):2431-441 CrossRef
    89. Lei K, Davis RJ (2003) JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci USA 100(5):2432-437 CrossRef
    90. Weston CR et al (2003) Activation of ERK1/2 by deltaRaf-1:ER* represses Bim expression independently of the JNK or PI3K pathways. Oncogene 22(9):1281-293 CrossRef
    91. Funakoshi Y et al (2002) Critical role of cAMP-response element-binding protein for angiotensin II-induced hypertrophy of vascular smooth muscle cells. J Biol Chem 277(21):18710-8717 CrossRef
    92. Hall JL et al (2001) Upregulation of glucose metabolism during intimal lesion formation is coupled to the inhibition of vascular smooth muscle cell apoptosis. Role of GSK3beta. Diabetes 50(5):1171-179 CrossRef
    93. Reusch JE, Watson PA (2004) Loss of CREB regulation of vascular smooth muscle cell quiescence in diabetes. Rev Endocr Metab Disord 5(3):209-19 CrossRef
    94. Tokunou T et al (2003) Apoptosis induced by inhibition of cyclic AMP response element-binding protein in vascular smooth muscle cells. Circulation 108(10):1246-252 CrossRef
    95. Zhang J et al (2006) Cyclic AMP inhibits p38 activation via CREB-induced dynein light chain. Mol Cell Biol 26(4):1223-234 CrossRef
    96. Zhang J et al (2008) Cyclic AMP inhibits JNK activation by CREB-mediated induction of c-FLIP(L) and MKP-1, thereby antagonizing UV-induced apoptosis. Cell Death Differ 15(10):1654-662 CrossRef
  • 作者单位:András Balogh (1) (2)
    Mária Németh (1) (2)
    Ibolya Koloszár (1) (2)
    Lajos Markó (3)
    Lukasz Przybyl (3)
    Kazushi Jinno (1) (2)
    Csilla Szigeti (1) (2)
    Marija Heffer (4)
    Matthias Gebhardt (3)
    József Szeberényi (1) (2)
    Dominik N. Müller (3)
    Gy?rgy Sétáló Jr. (1) (2)
    Marianna Pap (1) (2)

    1. Department of Medical Biology, University of Pécs Medical School, Szigeti 12, Pecs, 7624, Hungary
    2. Signal Transduction Research Group, University of Pécs János Szentágothai Research Centre, Ifjúság útja 20, Pecs, 7624, Hungary
    3. Experimental and Clinical Research Center, Charité Medical Faculty and Max-Delbrück Center for Molecular Medicine, Berlin, Germany
    4. Department of Medical Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
  • ISSN:1573-675X
文摘
Endoplasmic reticulum (ER) stress plays an essential role in unfolded protein response induced apoptosis contributing to several pathological conditions. Glycogen synthase kinase-3β (GSK-3β) plays a central role in several apoptotic signaling, including ER stress, as the active form of GSK-3β induces apoptosis. The phosphorylation of cAMP responsive element (CRE) binding protein (CREB) Ser-133 (S133) residue is the end-point of various signaling pathways, like growth factor signaling, while the Ser-129 (S129) residue is phosphorylated by GSK-3β. The significance of the ubiquitously expressed transcription factor CREB is demonstrated in prolonged, tunicamycin (TM)-induced ER stress in this study. In the experiments wild-type (wt) CREB, S129Ala, S133Ala or S129Ala–S133Ala mutant CREB expressing PC12 rat pheochromocytoma cell lines showed increased survival under TM-evoked prolonged ER stress compared to wtPC12 cells. After TM treatment ER stress was activated in all PC12 cell types. Lithium and SB-216763, the selective, well-known inhibitors of GSK-3β, decreased TM-induced apoptosis and promoted cell survival. The proapoptotic BH3-only Bcl-2 family member Bcl-2-interacting mediator of cell death (Bim) level was decreased in the different CREB overexpressing PC12 cells as a result of TM treatment. CREB overexpression also inhibited the sequestration of Bim protein from tubulin molecules, as it was demonstrated in wtPC12 cells. Transient expression of wtCREB diminished TM-induced apoptosis in wtPC12, Rat-1 and primary rat vascular smooth muscle cells. These findings demonstrate a novel role of CREB in different cell types as a potent protector against ER stress.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700