Resistance and reconfiguration of natural flexible submerged vegetation in hydrodynamic river modelling
详细信息    查看全文
  • 作者:Veerle Verschoren ; Dieter Meire ; Jonas Schoelynck…
  • 关键词:Open ; channel flow ; Roughness ; Macrophytes ; 2D modelling ; Stream ecosystem
  • 刊名:Environmental Fluid Mechanics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:16
  • 期:1
  • 页码:245-265
  • 全文大小:1,196 KB
  • 参考文献:1.Baptist MJ, Babovic V, Uthurburu JR, Keijzer M, Uittenbogaard RE, Mynett A, Verwey A (2007) On inducing equations for vegetation resistance. J Hydraul Res 45(4):435–450CrossRef
    2.Vandenbruwaene W, Temmerman S, Bouma TJ, Klaassen PC, de Vries MB, Callaghan DP, van Steeg P, Dekker F, van Duren LA, Martini E, Balke T, Biermans G, Schoelynck J, Meire P (2011) Flow interaction with dynamic vegetation patches: implications for biogeomorphic evolution of a tidal landscape. J Geophys Res-Earth. doi:10.​1029/​2010jf001788
    3.Zong LJ, Nepf H (2010) Flow and deposition in and around a finite patch of vegetation. Geomorphology 116(3–4):363–372. doi:10.​1016/​j.​geomorph.​2009.​11.​020 CrossRef
    4.Bal KD, Struyf E, Vereecken H, Viaene P, De Doncker L, de Deckere E, Mostaert F, Meire P (2011) How do macrophyte distribution patterns affect hydraulic resistances? Ecol Eng 37(3):529–533. doi:10.​1016/​j.​ecoleng.​2010.​12.​018 CrossRef
    5.Jarvela J (2005) Effect of submerged flexible vegetation on flow structure and resistance. J Hydrol 307(1–4):233–241. doi:10.​1016/​j.​jhydrol.​2004.​10.​013 CrossRef
    6.Nepf HM (2012) Hydrodynamics of vegetated channels. J Hydraul Res 50(3):262–279CrossRef
    7.Franklin P, Dunbar M, Whitehead P (2008) Flow controls on lowland river macrophytes: a review. Sci Total Environ 400(1–3):369–378. doi:10.​1016/​j.​scitotenv.​2008.​06.​018 CrossRef
    8.Schoelynck J, De Groote T, Bal K, Vandenbruwaene W, Meire P, Temmerman S (2012) Self-organised patchiness and scale-dependent bio-geomorphic feedbacks in aquatic river vegetation. Ecography 35(8):760–768. doi:10.​1111/​j.​1600-0587.​2011.​07177.​x CrossRef
    9.Gurnell AM (2014) Plants as river system engineers. Earth Surf Process Landf 39(1):4–25CrossRef
    10.Huthoff F, Augustijn DCM, Hulscher SJMH (2007) Analytical solution of the depth-averaged flow velocity in case of submerged rigid cylindrical vegetation. Water Resour Res. doi:10.​1029/​2006wr005625
    11.Zhang ML, Li CW, Shen YM (2013) Depth-averaged modeling of free surface flows in open channels with emerged and submerged vegetation. Appl Math Model 37(1–2):540–553. doi:10.​1016/​j.​apm.​2012.​02.​049 CrossRef
    12.Ortiz AC, Ashton A, Nepf H (2013) Mean and turbulent velocity fields near rigid and flexible plants and the implications for deposition. J Geophys Res-Earth 118(4):2585–2599. doi:10.​1002/​2013jf002858 CrossRef
    13.Bal KD, Bouma TJ, Buis K, Struyf E, Jonas S, Backx H, Meire P (2011) Trade-off between drag reduction and light interception of macrophytes: comparing five aquatic plants with contrasting morphology. Funct Ecol 25(6):1197–1205. doi:10.​1111/​j.​1365-2435.​2011.​01909.​x CrossRef
    14.Nepf HM, Ghisalberti M (2008) Flow and transport in channels with submerged vegetation. Acta Geophys 56(3):753–777. doi:10.​2478/​s11600-008-0017-y CrossRef
    15.Nikora N, Nikora V (2010) Flow penetration into the canopy of submerged vegetation: definitions and quantitative estimates. In: Dittrich AK, Koll K, Aberle J, Geisenhainer P (eds) River flow 2010. Federal Waterways Engineering and Research Insitute, Karlsruhe, pp 437–444
    16.Sand-Jensen K, Pedersen ML (2008) Streamlining of plant patches in streams. Freshw Biol 53(4):714–726. doi:10.​1111/​j.​1365-2427.​2007.​01928.​x CrossRef
    17.De Doncker L, Troch P, Verhoeven R, Bal K, Meire P, Quintelier J (2009) Determination of the Manning roughness coefficient influenced by vegetation in the river Aa and Biebrza river. Environ Fluid Mech 9(5):549–567. doi:10.​1007/​s10652-009-9149-0 CrossRef
    18.Dawson FH (1978) Aquatic plant management in semi-natural streams: role of marginal vegetation. J Environ Manag 6(3):213–221
    19.Green JC (2005) Comparison of blockage factors in modelling the resistance of channels containing submerged macrophytes. River Res Appl 21(6):671–686. doi:10.​1002/​Rra.​854 CrossRef
    20.Van Ieperen HJ, Herfst MS (1986) Laboratory experiments on the flow resistance of aquatic weeds. In: 2nd international conference on hydraulic design in water resources engineering: land drainage, pp 281–291
    21.Temple DM (1986) Velocity distribution coefficients for grass-lined channels. J Hydraul Eng 112(3):193–205CrossRef
    22.Larsen T, Frier JO, Vestergaard K (1990) Discharge stage relations in vegetated danish streams. In: international conference on river flood hydraulics, pp 187–195
    23.Bakry MF, Gates TK, Khattab AF (1992) Field-measured hydraulic resistance characteristics in vegetation-infested canals. J Irrig Drain Eng 118(2):256–274. doi:10.​1061/​(Asce)0733-9437(1992)118:​2(256) CrossRef
    24.Stone BM, Shen HT (2002) Hydraulic resistance of flow in channels with cylindrical roughness. J Hydraul Eng 128(5):500–506. doi:10.​1061/​(Asce)0733-9429(2002)128:​5(500) CrossRef
    25.Wilson CAME, Stoesser T, Bates PD, Pinzen AB (2003) Open channel flow through different forms of submerged flexible vegetation. J Hydraul Eng 129(11):847–853. doi:10.​1061/​(Asce)0733-9429(2003)129:​11(847) CrossRef
    26.Vargas-Luna A, Corsato A, Uijttewaal WSJ (2015) Effects of vegetation on flow and sediment transport: comparative analyses and validation of prediction models. Earth Surf Proc Land 40:157–176. doi:10.​1002/​esp.​3633 CrossRef
    27.de Langre E, Gutierrez A, Cossé J (2012) On scaling of drag reduction by reconfiguration in plants. Comptes Rendus Mech 340:35–40. doi:10.​1016/​j.​crme.​2011.​11.​005 CrossRef
    28.Folkard AM (2011) Vegetated flows in their environmental context: a review. Proceedings of the ICE - Engineering and Computational Mechanics 164(1):3–24. doi:10.​1680/​eacm.​8.​00006 CrossRef
    29.Nepf HM (1999) Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour Res 35(2):479–489CrossRef
    30.Jarvela J (2002) Flow resistance of flexible and stiff vegetation: a flume study with natural plants. J Hydrol 269(1–2):44–54CrossRef
    31.Chen ZB, Jiang CB, Nepf H (2013) Flow adjustment at the leading edge of a submerged aquatic canopy. Water Resour Res 49(9):5537–5551. doi:10.​1002/​Wrcr.​20403 CrossRef
    32.Wu F (2007) Characteristics of flow resistance in floodplain with non-submerged rigid vegetation. Asian Pac Coasts 2007:387–390
    33.do Amaral LGH, Righes AA, Souza PD, Dalla Costa R (2005) Automatic regulator for channel flow control on flooded rice. Agric Water Manag 75(3):184–193. doi:10.​1016/​j.​agwat.​2004.​12.​012 CrossRef
    34.Tal M, Paola C (2007) Dynamic single-thread channels maintained by the interaction of flow and vegetation. Geology 35(4):347–350. doi:10.​1130/​G23260a.​1 CrossRef
    35.Horppila J, Nurminen L (2003) Effects of submerged macrophytes on sediment resuspension and internal phosphorus loading in Lake Hiidenvesi (southern Finland). Water Res 37(18):4468–4474. doi:10.​1016/​S0043-1354(03)00405-6 CrossRef
    36.Nikora V (2010) Hydrodynamics of aquatic ecosystems: an interface between ecology, biomechanics and environmental fluid mechanics. River Res Appl 26(4):367–384. doi:10.​1002/​Rra.​1291 CrossRef
    37.Puijalon S, Bornette G, Sagnes P (2005) Adaptations to increasing hydraulic stress: morphology, hydrodynamics and fitness of two higher aquatic plant species. J Exp Bot 56(412):777–786. doi:10.​1093/​Jxb/​Eri063 CrossRef
    38.Schoelynck J, Meire D, Bal K, Buis K, Troch P, Bouma T, Meire P, Temmerman S (2013) Submerged macrophytes avoiding a negative feedback in reaction to hydrodynamic stress. Limnologica 43(5):371–380. doi:10.​1016/​j.​limno.​2013.​05.​003 CrossRef
    39.Dijkstra JT (2009) How to account for flexible aquatic vegetation in large-scale morphodynamic models. Coast Eng 1–5:2820–2831
    40.Dijkstra JT, Uittenbogaard RE (2010) Modeling the interaction between flow and highly flexible aquatic vegetation. Water Resour Res. doi:10.​1029/​2010wr009246
    41.Luhar M, Nepf HM (2011) Flow-induced reconfiguration of buoyant and flexible aquatic vegetation. Limnol Oceanogr 56(6):2003–2017. doi:10.​4319/​lo.​2011.​56.​6.​2003 CrossRef
    42.Siniscalchi F, Nikora VI (2012) Flow-plant interactions in open-channel flows: a comparative analysis of five freshwater plant species. Water Resour Res. doi:10.​1029/​2011wr011557
    43.Folkard AM (2005) Hydrodynamics of model Posidonia oceanica patches in shallow water. Limnol Oceanogr 50(5):1592–1600CrossRef
    44.Siniscalchi F, Nikora VI, Aberle J (2012) Plant patch hydrodynamics in streams: mean flow, turbulence, and drag forces. Water Resour Res. doi:10.​1029/​2011wr011050
    45.Aberle J, Jarvela J (2013) Flow resistance of emergent rigid and flexible floodplain vegetation. J Hydraul Res 51(1):33–45. doi:10.​1080/​00221686.​2012.​754795 CrossRef
    46.Hervouet J-M (2007) Hydrodynamics of free surface flows: modelling with the finite element method. Wiley, West SussexCrossRef
    47.Vargas-Luna A, Corsato A, Uijttewaal WSJ (2015) Effects of vegetation on flow and sediment transport: comparative analyses and validation of prediction models. Earth Surf Proc Land. doi:10.​1002/​esp.​3633
    48.Arboleda AM, Crosato A, Middelkoop H (2010) Reconstructing the early 19th-century Waal River by means of a 2D physics-based numerical model. Hydrol Process 24(25):3661–3675. doi:10.​1002/​Hyp.​7804 CrossRef
    49.Crosato A, Saleh MS (2011) Numerical study on the effects of floodplain vegetation on river planform style. Earth Surf Proc Land 36(6):711–720. doi:10.​1002/​Esp.​2088 CrossRef
    50.Nardin W, Edmonds DA (2014) Optimum vegetation height and density for inorganic sedimentation in deltaic marshes. Nat Geosci 7(10):722–726. doi:10.​1038/​Ngeo2233 CrossRef
    51.Ancrement GJ, Schneider VR (1989) Guide for selecting Manning’s roughness coefficients for natural channels and flood plains. United States Government Printing Office, Washington
    52.Jalonen J, Jarvela J, Aberle J (2013) Leaf area index as vegetation density measure for hydraulic analyses. J Hydraul Eng 139(5):461–469. doi:10.​1061/​(Asce)Hy.​1943-7900.​0000700 CrossRef
    53.Schoneboom T, Aberle J, Dittrich A (2010) Hydraulic resistance of vegetated flows: contribution of bed shear stress and vegetative drag to total hydraulic resistance. In: Dittrich AK, Koll K, Aberle J, Geisenhainer P (eds) River flow 2010. Federal Waterways Engineering and Research Insitute, Karlsruhe, pp 269–276
    54.Nepf HM (2012) Flow and transport in regions with aquatic vegetation. Annu Rev Fluid Mech 44:123–142. doi:10.​1146/​annurev-fluid-120710-101048 CrossRef
    55.Sand-Jensen K (2003) Drag and reconfiguration of freshwater macrophytes. Freshw Biol 48(2):271–283. doi:10.​1046/​j.​1365-2427.​2003.​00998.​x CrossRef
    56.Hoerner S (1965) Fluid-dynamic drag. Hoerner Fluid Dynamics, Brick Town
    57.Whittaker P, Wilson C, Aberle J, Rauch HP, Xavier P (2013) A drag force model to incorporate the reconfiguration of full-scale riparian trees under hydrodynamic loading. J Hydraul Res 51(5):569–580. doi:10.​1080/​00221686.​2013.​822936 CrossRef
    58.Marjoribanks TI, Hardy RJ, Lane SN (2014) The hydraulic description of vegetated river channels: the weakness of existing formulations and emerging alternatives. WIREs Water 1(6):549–560. doi:10.​1002/​wat2.​1044 CrossRef
    59.King AT, Tinoco RO, Cowen EA (2012) A k-epsilon turbulence model based on the scales of vertical shear and stem wakes valid for emergent and submerged vegetated flows. J Fluid Mech 701:1–39. doi:10.​1017/​Jfm.​2012.​113 CrossRef
    60.Akima H (2013) Akima: interpolation of irregularly spaced data. R package ver. 3.0
    61.Wu F, Shen HW, Chou YJ (1999) Variation of roughness coefficients for unsubmerged and submerged vegetation. J Hydraul Eng 125(9):934–942. doi:10.​1061/​(Asce)0733-9429(1999)125:​9(934) CrossRef
    62.Kouwen N, Li RM (1980) Biomechanics of vegetative channel linings. J Hydrual Eng Div 106(6):1085–1106
    63.Ciraolo G, Ferreri GB, La Loggia G (2006) Flow resistance of Posidonia oceanica in shallow water. J Hydraul Res 44(2):189–202CrossRef
    64.Sukhodolova TA, Sukhodolov AN (2012) Vegetated mixing layer around a finite-size patch of submerged plants: 1. Theory and field experiments. Water Resour Res. doi:10.​1029/​2011wr011804
    65.Folkard AM (2011) Flow regimes in gaps within stands of flexible vegetation: laboratory flume simulations. Environ Fluid Mech 11(3):289–306. doi:10.​1007/​s10652-010-9197-5 CrossRef
    66.Bal KD, Brion N, Woule-Ebongue V, Schoelynck J, Jooste A, Barron C, Dehairs F, Meire P, Bouma TJ (2013) Influence of hydraulics on the uptake of ammonium by two freshwater plants. Freshw Biol 58(12):2452–2463. doi:10.​1111/​Fwb.​12222 CrossRef
    67.Stephan U, Gutknecht D (2002) Hydraulic resistance of submerged flexible vegetation. J Hydrol 269(1–2):27–43. doi:10.​1016/​S0022-1694(02)00192-0 CrossRef
    68.Wilson CAME (2007) Flow resistance models for flexible submerged vegetation. J Hydrol 342(3–4):213–222. doi:10.​1016/​j.​jhydrol.​2007.​04.​022 CrossRef
    69.Chow VT (1959) Open-channel hydraulics. McGraw-Hill, New York. doi:10.​1029/​TR037i003p00327
    70.Extence CA, Balbi DM, Chadd RP (1999) River flow indexing using British benthic macroinvertebrates: a framework for setting hydroecological objectives. Regul River 15(6):543–574CrossRef
    71.Gibbins C, Vericat D, Batalla RJ (2007) When is stream invertebrate drift catastrophic? The role of hydraulics and sediment transport in initiating drift during flood events. Freshw Biol 52(12):2369–2384. doi:10.​1111/​j.​1365-2427.​2007.​01858.​x CrossRef
    72.Umeda S (2011) Scour regime and scour depth around a pile in waves. J Coast Res 64:845–849
    73.Koch EW, Ailstock MS, Booth DM, Shafer DJ, Magoun AD (2010) The role of currents and waves in the dispersal of submersed angiosperm seeds and seedlings. Restor Ecol 18(4):584–595. doi:10.​1111/​j.​1526-100X.​2010.​00698.​x CrossRef
    74.Puijalon S, Bouma TJ, Douady CJ, van Groenendael J, Anten NPR, Martel E, Bornette G (2011) Plant resistance to mechanical stress: evidence of an avoidance-tolerance trade-off. New Phytol 191(4):1141–1149. doi:10.​1111/​j.​1469-8137.​2011.​03763.​x CrossRef
    75.Montakhab A, Yusuf B, Ghazali AH, Mohamed TA (2012) Flow and sediment transport in vegetated waterways: a review. Rev Environ Sci Bio-Technol 11(3):275–287. doi:10.​1007/​s11157-012-9266-y CrossRef
  • 作者单位:Veerle Verschoren (1)
    Dieter Meire (2) (3)
    Jonas Schoelynck (1)
    Kerst Buis (1)
    Kris D Bal (1) (4)
    Peter Troch (2)
    Patrick Meire (1)
    Stijn Temmerman (1)

    1. Department of Biology, Ecosystem Management Research Group, University of Antwerp, Wilrijk, Belgium
    2. Hydraulics Laboratory, Department of Civil Engineering, Ghent University, Ghent, Belgium
    3. Flanders Hydraulics Research, Antwerp, Belgium
    4. Department of Biodiversity, University of Limpopo, Sovenga, South Africa
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environmental Physics
    Mechanics
    Hydrogeology
    Meteorology and Climatology
    Oceanography
  • 出版者:Springer Netherlands
  • ISSN:1573-1510
文摘
In-stream submerged macrophytes have a complex morphology and several species are not rigid, but are flexible and reconfigure along with the major flow direction to avoid potential damage at high stream velocities. However, in numerical hydrodynamic models, they are often simplified to rigid sticks. In this study hydraulic resistance of vegetation is represented by an adapted bottom friction coefficient and is calculated using an existing two layer formulation for which the input parameters were adjusted to account for (i) the temporary reconfiguration based on an empirical relationship between deflected vegetation height and upstream depth-averaged velocity, and (ii) the complex morphology of natural, flexible, submerged macrophytes. The main advantage of this approach is that it removes the need for calibration of the vegetation resistance coefficient. The calculated hydraulic roughness is an input of the hydrodynamic model Telemac 2D, this model simulates depth-averaged stream velocities in and around individual vegetation patches. Firstly, the model was successfully validated against observed data of a laboratory flume experiment with three macrophyte species at three discharges. Secondly, the effect of reconfiguration was tested by modelling an in situ field flume experiment with, and without, the inclusion of macrophyte reconfiguration. The inclusion of reconfiguration decreased the calculated hydraulic roughness which resulted in smaller spatial variations of simulated stream velocities, as compared to the model scenario without macrophyte reconfiguration. We discuss that including macrophyte reconfiguration in numerical models input, can have significant and extensive effects on the model results of hydrodynamic variables and associated ecological and geomorphological parameters. Keywords Open-channel flow Roughness Macrophytes 2D modelling Stream ecosystem

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700