Expression of 3-hydroxy-3-methylglutaryl-CoA reductase, p-hydroxybenzoate-m-geranyltransferase and genes of phenylpropanoid pathway exhibits positive correlation with shikonins content in arnebia
详细信息    查看全文
  • 作者:Ravi S Singh (1)
    Rishi K Gara (1) (2)
    Pardeep K Bhardwaj (1)
    Anish Kaachra (1)
    Sonia Malik (1)
    Ravi Kumar (1)
    Madhu Sharma (1)
    Paramvir S Ahuja (1)
    Sanjay Kumar (1)
  • 刊名:BMC Molecular Biology
  • 出版年:2010
  • 出版时间:December 2010
  • 年:2010
  • 卷:11
  • 期:1
  • 全文大小:1027KB
  • 参考文献:1. Kim SH, Kang IC, Yoon TJ: Antitumor activities of a newly synthesized shikonin derivative, 2-hyim-DMNQ-S-33. / Cancer Lett 2001, 172: 171-75. CrossRef
    2. Papageorgiou VP, Andreana N, Assimopoulou E, Couladouros A, Hepworth D, Nicolaou KC: The chemistry and biology of alkannin, shikonin, and related naphthazarin natural products. / Angewandte Chemie International Edition 1999, 38: 270-00. CrossRef
    3. Chen X, Yang L, Oppenheim JJ, Howard MZ: Cellular pharmacology studies of shikonin derivatives. / Phytother Res 2002, 16: 199-09. CrossRef
    4. Kaith BS, Kaith NS, Chauhan NS: Anti-inflammatory effect of Arnebia euchroma root extracts in rats. / J ethnopharm 1996, 55: 77-0. CrossRef
    5. Chauhan NS: / Medicinal and aromatic plants of Himachal Pradesh. New Delhi: Indus Publishing Company; 1999.
    6. Newman JD, Chappell J: Isoprenoid biosynthesis in plants: carbon partitioning within the cytoplasmic pathway. / Crit Rev Biochem Mol Biol 1999, 34: 95-06. CrossRef
    7. Lichtenthaler HK, Rohmer M, Schwender J: Two independent biochemical pathways for isopentenyl diphosphate (IPP) and isoprenoid biosynthesis in higher plants. / Physiol Plant 1997, 101: 643-52. CrossRef
    8. Eisenreich W, Rohdich F, Bacher A: Deoxyxylulose phosphate pathway to terpenoids. / Trends Plant Sci 2001, 6: 78-4. CrossRef
    9. Rodriguez-Concepcion M, Boronat A: Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids: A metabolic milestone achieved through genomics. / Plant Physiol 2002, 130: 1079-089. CrossRef
    10. Nogués I, Brilli F, Loreto F: Dimethylallyl diphosphate and geranyl diphosphate pools of plant species characterized by different isoprenoid emissions. / Plant Physiol 2006, 141: 721-30. CrossRef
    11. Sando T, Takaoka C, Mukai Y, Yamashita A, Hattori M, Ogasawara N, Fukusaki E, Kobayashi A: Cloning and characterization of mevalonate pathway genes in a natural rubber producing plant, Hevea brasiliensis . / Biosci Biotechnol Biochem 2008, 72: 2049-060. CrossRef
    12. Totte N, Charon L, Rohmer M, Compernolle F, Baboeuf I, Geuns JMC: Biosynthesis of the diterpenoid steviol, an entkaurene derivative from Stevia rebaudiana Bertoni, via the methylerythritol phosphate pathway. / Tetrahedron Lett 2000, 41: 6407-410. CrossRef
    13. Heide L, Nishioka N, Fukui H, Tabata M: Enzymatic regulation of shikonin biosynthesis in L. erythrorhizon cell cultures. / Phytochem 1989, 28: 1873-877. CrossRef
    14. Yazaki K, Kunihisa M, Fujisaki T, Sato F: Geranyl diphosphate: 4-hydroxybenzoate geranyltransferase from L. erythrorhizon . Cloning and characterization of a key enzyme in shikonin biosynthesis. / J Biol Chem 2002, 277: 6240-246. CrossRef
    15. Lange BM, Serving K, Bechthold A, Geide L: Regulatory role of microsomal 3-hydroxy-3-methylglutaryl-coenzyme-A reductase for shikonin biosynthesis in L. erythrorhizon cell suspension cultures. / Planta 1998, 204: 234-41. CrossRef
    16. Vollack KU, Bach TJ: Cloning of a cDNA encoding cytosolic acetoacetyl-coenzyme A thiolase from radish by functional expression in Saccharomyces cerevkkie . / Plant Physiol 1996, 111: 1097-107. CrossRef
    17. Nagegowda DA, Bach TJ, Chye ML: Brassica juncea 3-hydroxy-3-methylglutaryl (HMG)-CoA synthase 1: expression and characterization of recombinant wild-type and mutant enzymes. / Biochemical J 2004, 383: 517-27. CrossRef
    18. Learned RM, Fink GR: 3-Hydroxy-3-methylglutaryl-coenzyme A reductase from Arabidopsis thaliana is structurally distinct from the yeast and animal enzymes. / Proc Natl Acad Sci USA 1989, 86: 2779-783. CrossRef
    19. Lluch MA, Masferrer A, Arr'o M, Boronat A, Ferrer A: Molecular cloning and expression analysis of the mevalonate kinase gene from Arabidopsis thaliana . / Plant Mol Bio 2000, 42: 365-76. CrossRef
    20. Cordier H, Lacombe C, Karst F, Berge's T: The Saccharomyces cerevisiae mevalonate diphosphate decarboxylase ( Erg19p ) forms homodimers in vivo , and a single substitution in a structurally conserved region impairs dimerization. / Current Microbiol 1999, 38: 290-94. CrossRef
    21. Campbell M, Hahn FM, Poulter CD, Leustek T: Analysis of the isopentenyl diphosphate isomerase gene family from Arabidopsis thaliana . / Plant Mol Biol 1997, 36: 323-28. CrossRef
    22. Ehlting J, Buettner D, Wang Q, Douglas CJ, Somssich IE, Kombrink E: Three 4-coumarate: coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms. / Plant J 1999, 19: 9-0. CrossRef
    23. Cochrane FC, Davin LB, Lewis NG: The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. / Phytochem 2004, 65: 1557-564. CrossRef
    24. Burke C, Croteau R: Geranyl diphosphate synthase from Abies grandis : cDNA isolation, functional expression, and characterization. / Arch Biochem Biophys 2002, 405: 130-36. CrossRef
    25. Ro DK, Mah N, Ellis BE, Douglas CJ: Functional characterization and subcellular localization of Poplar ( Populus trichocarpa x Populus deltoides ) cinnamate 4-hydroxylase. / Plant Physiol 2001, 126: 317-29. CrossRef
    26. Alberts AW, Chen J, Kuron G, Hunt V, Huff J, Hoffman C, Rothrock J, Lopez M, Joshua H, Harris E, Patchett A, Monaghan R, Currie S, Stapley E, Albers-Schonbergy G, Hensens O, Hirshfieldt J, Hoogsteent K, Liescht J, Springer J: Mevinolin: A highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. / Proc Natl Acad Sci USA 1980, 77: 3957-961. CrossRef
    27. Schwender J, Muller C, Zeidler J, Lichtenthaler HK: Cloning and heterologous expression of a cDNA encoding 1-deoxy-D-xylulose-5-phosphate reductoisomerase of Arabidopsis thaliana . / FEBS Lett 1999, 455: 140-44. CrossRef
    28. Gaisser S, Heide L: Inhibition and regulation of shikonin biosynthesis in suspension cultures of L. erythrorhizon . / Phytochem 1996, 41: 1065-072. CrossRef
    29. Skorupinska-Tudek K, Poznanski J, Wojcik J, Bienkowski T, Szostkiewicz I, Zelman-Femiak M, Bajda A, Chojnacki T, Olszowska O, Grunler J, Meyer O, Rohmer M, Danikiewicz W, Swiezewska E: Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of dolichols in plants. / J Biol Chem 2008, 283: 21024-1035. CrossRef
    30. Kobayashi K, Suzuki M, Tang J: Lovastatin Insensitive 1, a novel pentatricopeptide repeat protein, is a potential regulatory factor of isoprenoid biosynthesis in Arabidopsis . / Plant Cell Physiol 2007, 48: 322-31. CrossRef
    31. Dixon RA, Lamb CJ: Regulation of secondary metabolism at the biochemical and genetic levels. In / BV Charlwood, Secondary Products from Plant Tissue Culture. Edited by: Rhodes MJC. Clarendon Press, Oxford; 1990:103-18.
    32. Rani A, Singh K, Sood P, Kumar S, Ahuja PS: p -Coumarate: CoA ligase as a key gene in the yield of catechins in tea [ Camellia sinensis (L.) O. Kuntze]. / Funct Integr Genomics 2009, 9: 271-75. CrossRef
    33. Goldstein JL, DeBose-Boyd RA, Brown MS: Protein sensors for membrane sterols. / Cell 2006, 124: 35-6. CrossRef
    34. Gray JC: Control of isoprenoid biosynthesis in higher plants. / Adv Bot Res 1987, 14: 25-1. CrossRef
    35. Oulmouden A, Karst F: Nucleotide sequence of the ERG12 gene of Saccharomyces cerevisiae encoding mevalonate kinase. / Curr Genet 1991, 19: 9-4. CrossRef
    36. Stermer BA, Bianchini GM, Korth KL: Regulation of HMG-CoA reductase activity in plants. / J Lipid Res 1994, 35: 1133-140.
    37. Bach TJ, Boronat A, Campos N, Ferrer A, Wollack K-U: Mevalonate biosynthesis in plants. In / Biochemistry and Function of Sterols. Edited by: Parish EJ, Nes WD. CRC Press, Boca Raton, FL; 1997:135-50.
    38. Inouye H, Ueda S, Inoue K, Matsumura H: Biosynthesis of shikonin in callus cultures of Lithospermum erythrorhizon . / Phytochem 1979, 18: 1301-308. CrossRef
    39. Schmid HV, Zenk MH: p-Hydroxybenzoic acid and mevalonic acid as precursors of the plant naphthaquinone alkannin. / Tetrahedron Lett 1971, 44: 4151-155. CrossRef
    40. Yamamura Y, Sahin FP, Nagatsu A, Mizukami H: Molecular cloning and characterization of a cDNA encoding a novel apoplastic protein preferentially expressed in a shikonin-producing callus strain of Lithospermum erythrorhizon . / Plant Cell Physiol 2003, 44: 437-46. CrossRef
    41. Singh K, Kumar S, Rani A, Gulati A, Ahuja PS: Phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) and catechins (flavan-3-ols) accumulation in tea. / Funct Integr Genomics 2009, 9: 125-34. CrossRef
    42. Heide L, Tabata M: Geranylpyrophosphate: p-hydroxybenzoate geranyltransferase activity in extracts of Lithospermum erythrorhizon cell culture. / Phytochem 1987, 26: 1651-655. CrossRef
    43. Murashige T, Skoog F: A revised medium for rapid growth and bioassay with tobacco tissue cultures. / Physiol Plant 1962, 15: 473-97. CrossRef
    44. Fujita Y, Hara Y, Suga C, Morimoto T: Production of shikonin derivatives by cell suspension cultures of Lithospermum erythrorhizon . / Plant Cell Rep 1981, 1: 61-1. CrossRef
    45. Yazaki K, Tanaka S, Matsuoka H, Sato F: Stable transformation of Lithospermum erythrorhizon by Agrobacterium rhizogenes and shikonin production of the transformants. / Plant Cell Rep 1998, 18: 214-19. CrossRef
    46. Kawoosa T, Singh H, Kumar A, Sharma SK, Devi K, Dutt S, Vats SK, Sharma M, Ahuja PS, Kumar S: Light and temperature regulated terpene biosynthesis: hepatoprotective monoterpene picroside accumulation in Picrorhiza kurrooa . / Funct Integr Genomics 2010, 10: 393-04. CrossRef
    47. Ghawana S, Singh K, Riazada J, Rani A, Bhardwaj PK, Kumar S: A method for rapid isolation of RNA and a kit thereof. 2007.
    48. Singh RS, Kumar S: A composition and method for removal of colours and inhibitors from tissues to isolate RNA. 2008.
    49. Sambrook K, Fritsch EF, Maniatis T: / Molecular cloning: a laboratory manual. 2nd edition. Cold Spring Harbor Laboratory Press; 1989.
    50. Singh K, Raizada J, Bhardwaj P, Ghawana S, Rani A, Singh H, Kaul K, Kumar S: 26S rRNA based internal control gene primer pair for reverse transcription-polymerase chain reaction-based quantitative expression studies in diverse plant species. / Anal Biochem 2004, 335: 330-33. CrossRef
  • 作者单位:Ravi S Singh (1)
    Rishi K Gara (1) (2)
    Pardeep K Bhardwaj (1)
    Anish Kaachra (1)
    Sonia Malik (1)
    Ravi Kumar (1)
    Madhu Sharma (1)
    Paramvir S Ahuja (1)
    Sanjay Kumar (1)

    1. Biotechnology Division, Institute of Himalayan Bioresource Technology (Council of Scientific and Industrial Research), Palampur, 176061, (Himachal Pradesh), India
    2. Endocrinology Division, Central Drug Research Institute, Lucknow, 226001, Uttar Pradesh, India
文摘
Background Geranyl pyrophosphate (GPP) and p -hydroxybenzoate (PHB) are the basic precursors involved in shikonins biosynthesis. GPP is derived from mevalonate (MVA) and/or 2- C -methyl-D-erythritol 4-phosphate (MEP) pathway(s), depending upon the metabolite and the plant system under consideration. PHB, however, is synthesized by only phenylpropanoid (PP) pathway. GPP and PHB are central moieties to yield shikonins through the synthesis of m -geranyl- p -hydroxybenzoate (GHB). Enzyme p -hydroxybenzoate- m -geranyltransferase (PGT) catalyses the coupling of GPP and PHB to yield GHB. The present research was carried out in shikonins yielding plant arnebia [Arnebia euchroma (Royle) Johnston], wherein no molecular work has been reported so far. The objective of the work was to identify the preferred GPP synthesizing pathway for shikonins biosynthesis, and to determine the regulatory genes involved in the biosynthesis of GPP, PHB and GHB. Results A cell suspension culture-based, low and high shikonins production systems were developed to facilitate pathway identification and finding the regulatory gene. Studies with mevinolin and fosmidomycin, inhibitors of MVA and MEP pathway, respectively suggested MVA as a preferred route of GPP supply for shikonins biosynthesis in arnebia. Accordingly, genes of MVA pathway (eight genes), PP pathway (three genes), and GHB biosynthesis were cloned. Expression studies showed down-regulation of all the genes in response to mevinolin treatment, whereas gene expression was not influenced by fosmidomycin. Expression of all the twelve genes vis-à-vis shikonins content in low and high shikonins production system, over a period of twelve days at frequent intervals, identified critical genes of shikonins biosynthesis in arnebia. Conclusion A positive correlation between shikonins content and expression of 3-hydroxy-3-methylglutaryl-CoA reductase (AeHMGR) and AePGT suggested critical role played by these genes in shikonins biosynthesis. Higher expression of genes of PP pathway was a general feature for higher shikonins biosynthesis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700