Mesenchymal Stem Cells as a Potential Therapeutic Tool for Spinocerebellar Ataxia
详细信息    查看全文
  • 作者:Kazuhiro Nakamura (1)
    Tokue Mieda (2)
    Nana Suto (1)
    Serina Matsuura (1)
    Hirokazu Hirai (1)

    1. Department of Neurophysiology
    ; Gunma University Graduate School of Medicine ; 3-39-22 Showa-machi ; Maebashi ; Gunma ; 371-8511 ; Japan
    2. Orthopedic Surgery
    ; Gunma University Graduate School of Medicine ; 3-39-22 Showa-machi ; Maebashi ; Gunma ; 371-8511 ; Japan
  • 关键词:Mesenchymal stem cells ; Motor coordination ; Mouse ; Purkinje cells ; Spinocerebellar ataxia
  • 刊名:The Cerebellum
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:14
  • 期:2
  • 页码:165-170
  • 全文大小:516 KB
  • 参考文献:1. Orr, HT (2012) Cell biology of spinocerebellar ataxia. J Cell Biol 197: pp. 167-77 CrossRef
    2. Manto, MU (2005) The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum 4: pp. 2-6 CrossRef
    3. Taroni, F, DiDonato, S (2004) Pathways to motor incoordination: the inherited ataxias. Nat Rev Neurosci 5: pp. 641-55 CrossRef
    4. Matilla-Duenas, A, Goold, R, Giunti, P (2008) Clinical, genetic, molecular, and pathophysiological insights into spinocerebellar ataxia type 1. Cerebellum 7: pp. 106-14 CrossRef
    5. Robitaille, Y, Schut, L, Kish, SJ (1995) Structural and immunocytochemical features of olivopontocerebellar atrophy caused by the spinocerebellar ataxia type 1 (SCA-1) mutation define a unique phenotype. Acta Neuropathol 90: pp. 572-81 CrossRef
    6. Harding, AE (1983) Classification of the hereditary ataxias and paraplegias. Lancet 1: pp. 1151-5 CrossRef
    7. Burright, EN, Clark, HB, Servadio, A, Matilla, T, Feddersen, RM, Yunis, WS (1995) SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell 82: pp. 937-48 CrossRef
    8. Clark, HB, Burright, EN, Yunis, WS, Larson, S, Wilcox, C, Hartman, B (1997) Purkinje cell expression of a mutant allele of SCA1 in transgenic mice leads to disparate effects on motor behaviors, followed by a progressive cerebellar dysfunction and histological alterations. J Neurosci 17: pp. 7385-95
    9. Xia, H, Mao, Q, Eliason, SL, Harper, SQ, Martins, IH, Orr, HT (2004) RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 10: pp. 816-20 CrossRef
    10. Lee, Y, Samaco, RC, Gatchel, JR, Thaller, C, Orr, HT, Zoghbi, HY (2008) miR-19, miR-101 and miR-130 co-regulate ATXN1 levels to potentially modulate SCA1 pathogenesis. Nat Neurosci 11: pp. 1137-9 CrossRef
    11. Hirai, H (2008) Progress in transduction of cerebellar Purkinje cells in vivo using viral vectors. Cerebellum 7: pp. 273-8 CrossRef
    12. Sawada, Y, Kajiwara, G, Iizuka, A, Takayama, K, Shuvaev, AN, Koyama, C (2010) High transgene expression by lentiviral vectors causes maldevelopment of Purkinje cells in vivo. Cerebellum 9: pp. 291-302 CrossRef
    13. Torashima, T, Koyama, C, Iizuka, A, Mitsumura, K, Takayama, K, Yanagi, S (2008) Lentivector-mediated rescue from cerebellar ataxia in a mouse model of spinocerebellar ataxia. EMBO Rep 9: pp. 393-9 CrossRef
    14. Chintawar, S, Hourez, R, Ravella, A, Gall, D, Orduz, D, Rai, M (2009) Grafting neural precursor cells promotes functional recovery in an SCA1 mouse model. J Neurosci 29: pp. 13126-35 CrossRef
    15. Mazzini, L, Ferrero, I, Luparello, V, Rustichelli, D, Gunetti, M, Mareschi, K (2010) Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a phase I clinical trial. Exp Neurol 223: pp. 229-37 CrossRef
    16. Chen, J, Li, Y, Katakowski, M, Chen, X, Wang, L, Lu, D (2003) Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res 73: pp. 778-86 CrossRef
    17. Li, Y, Chen, J, Zhang, CL, Wang, L, Lu, D, Katakowski, M (2005) Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia 49: pp. 407-17 CrossRef
    18. Lagasse, E, Connors, H, Al-Dhalimy, M, Reitsma, M, Dohse, M, Osborne, L (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6: pp. 1229-34 CrossRef
    19. Pittenger, MF, Mackay, AM, Beck, SC, Jaiswal, RK, Douglas, R, Mosca, JD (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284: pp. 143-7 CrossRef
    20. Woodbury, D, Reynolds, K, Black, IB (2002) Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. J Neurosci Res 69: pp. 908-17 CrossRef
    21. Baddoo, M, Hill, K, Wilkinson, R, Gaupp, D, Hughes, C, Kopen, GC (2003) Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem 89: pp. 1235-49 CrossRef
    22. Gimble, J, Guilak, F (2003) Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 5: pp. 362-9 CrossRef
    23. Lee, OK, Kuo, TK, Chen, WM, Lee, KD, Hsieh, SL, Chen, TH (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103: pp. 1669-75 CrossRef
    24. Paul, G, Anisimov, SV (2013) The secretome of mesenchymal stem cells: potential implications for neuroregeneration. Biochimie 95: pp. 2246-56 CrossRef
    25. Jones, J, Jaramillo-Merchan, J, Bueno, C, Pastor, D, Viso-Leon, M, Martinez, S (2010) Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia. Neurobiol Dis 40: pp. 415-23 CrossRef
    26. Zuo, J, Jager, PL, Takahashi, KA, Jiang, W, Linden, DJ, Heintz, N (1997) Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature 388: pp. 769-73 CrossRef
    27. Matsuura, S, Shuvaev, AN, Iizuka, A, Nakamura, K, Hirai, H (2014) Mesenchymal stem cells ameliorate cerebellar pathology in a mouse model of spinocerebellar ataxia type 1. Cerebellum 13: pp. 323-30 CrossRef
    28. Zhang, MJ, Sun, JJ, Qian, L, Liu, Z, Zhang, Z, Cao, W (2011) Human umbilical mesenchymal stem cells enhance the expression of neurotrophic factors and protect ataxic mice. Brain Res 1402: pp. 122-31 CrossRef
    29. Bonab, MM, Sahraian, MA, Aghsaie, A, Karvigh, SA, Hosseinian, SM, Nikbin, B (2012) Autologous mesenchymal stem cell therapy in progressive multiple sclerosis: an open label study. Curr Stem Cell Res Ther 7: pp. 407-14 CrossRef
    30. Olson, SD, Pollock, K, Kambal, A, Cary, W, Mitchell, GM, Tempkin, J (2012) Genetically engineered mesenchymal stem cells as a proposed therapeutic for Huntington鈥檚 disease. Mol Neurobiol 45: pp. 87-98 CrossRef
    31. Hare, JM, Traverse, JH, Henry, TD, Dib, N, Strumpf, RK, Schulman, SP (2009) A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 54: pp. 2277-86 CrossRef
    32. Newman, RE, Yoo, D, LeRoux, MA, Danilkovitch-Miagkova, A (2009) Treatment of inflammatory diseases with mesenchymal stem cells. Inflamm Allergy Drug Targets 8: pp. 110-23 CrossRef
    33. Blanc, K (2006) Mesenchymal stromal cells: tissue repair and immune modulation. Cytotherapy 8: pp. 559-61 CrossRef
    34. Joyce, N, Annett, G, Wirthlin, L, Olson, S, Bauer, G, Nolta, JA (2010) Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med 5: pp. 933-46 CrossRef
    35. Meyerrose, T, Olson, S, Pontow, S, Kalomoiris, S, Jung, Y, Annett, G (2010) Mesenchymal stem cells for the sustained in vivo delivery of bioactive factors. Adv Drug Deliv Rev 62: pp. 1167-74 CrossRef
    36. Aizman, I, Tate, CC, McGrogan, M, Case, CC (2009) Extracellular matrix produced by bone marrow stromal cells and by their derivative, SB623 cells, supports neural cell growth. J Neurosci Res 87: pp. 3198-206 CrossRef
    37. Gahan, PB, Stroun, M (2010) The virtosome鈥攁 novel cytosolic informative entity and intercellular messenger. Cell Biochem Funct 28: pp. 529-38 CrossRef
    38. Gerdes, HH, Carvalho, RN (2008) Intercellular transfer mediated by tunneling nanotubes. Curr Opin Cell Biol 20: pp. 470-5 CrossRef
    39. Simons, M, Raposo, G (2009) Exosomes鈥攙esicular carriers for intercellular communication. Curr Opin Cell Biol 21: pp. 575-81 CrossRef
    40. Meyerrose, TE, Roberts, M, Ohlemiller, KK, Vogler, CA, Wirthlin, L, Nolta, JA (2008) Lentiviral-transduced human mesenchymal stem cells persistently express therapeutic levels of enzyme in a xenotransplantation model of human disease. Stem Cells 26: pp. 1713-22 CrossRef
    41. Olson, SD, Kambal, A, Pollock, K, Mitchell, GM, Stewart, H, Kalomoiris, S (2012) Examination of mesenchymal stem cell-mediated RNAi transfer to Huntington鈥檚 disease affected neuronal cells for reduction of huntingtin. Mol Cell Neurosci 49: pp. 271-81 CrossRef
    42. Liu, J, Han, D, Wang, Z, Xue, M, Zhu, L, Yan, H (2013) Clinical analysis of the treatment of spinal cord injury with umbilical cord mesenchymal stem cells. Cytotherapy 15: pp. 185-91 CrossRef
    43. Dongmei, H, Jing, L, Mei, X, Ling, Z, Hongmin, Y, Zhidong, W (2011) Clinical analysis of the treatment of spinocerebellar ataxia and multiple system atrophy-cerebellar type with umbilical cord mesenchymal stromal cells. Cytotherapy 13: pp. 913-7 CrossRef
    44. Jin, JL, Liu, Z, Lu, ZJ, Guan, DN, Wang, C, Chen, ZB (2013) Safety and efficacy of umbilical cord mesenchymal stem cell therapy in hereditary spinocerebellar ataxia. Curr Neurovasc Res 10: pp. 11-20 CrossRef
  • 刊物主题:Neurosciences; Neurology; Neurobiology;
  • 出版者:Springer US
  • ISSN:1473-4230
文摘
Spinocerebellar ataxia (SCA) is a devastating progressive neurodegenerative disorder, for which no effective treatments have been developed. However, some studies have shown that an intracerebellar or intrathecal injection of mesenchymal stem cells (MSCs) was partially effective in some genetic mouse models of cerebellar ataxia such as SCA1 and Lurcher mutant. MSCs likely exert their therapeutic efficacy by secreting innate factors to induce neuronal growth and synaptic connection and reduce apoptosis. In this review, we introduce the therapeutic influence of MSCs on each mouse model for cerebellar ataxia and the possible mechanisms underlying the action of MSCs. We also introduce studies on the safety and effectiveness of umbilical cord MSCs for patients with SCA.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700