Stress-diffusion coupled multiscale analysis of Si anode for Li-ion battery᾿
详细信息    查看全文
  • 作者:Seongmin Chang ; Janghyuk Moon ; Maenghyo Cho
  • 关键词:Diffusion ; induced stress ; Li ; ion battery ; Multiscale analysis ; Si anode
  • 刊名:Journal of Mechanical Science and Technology
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:29
  • 期:11
  • 页码:4807-4816
  • 全文大小:1,026 KB
  • 参考文献:[1]L. Y. Beaulieu, K. W. Eberman, R. L. Turner, L. J. Krause and J. R. Dahn, Colossal reversible volume changes in lithium alloys, Electrochemical and Solid State Letters, 4 (2001) A137–A140.CrossRef
    [2]J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414 (2001) 359–367.CrossRef
    [3]M. Winter and R. J. Brodd, What are batteries, fuel cells, and supercapacitors?, Chem. Rev., 105 (2005) 1021–1021.CrossRef
    [4]M. N. Obrovac, L. Christensen, D. B. Le and J. R. Dahnb, Alloy design for lithium-ion battery anodes, Journal of the Electrochemical Society, 154 (2007) A849–A855.CrossRef
    [5]C. M. Park, J. H. Kim, H. Kim and H. J. Sohn, Li-alloy based anode materials for Li secondary batteries, Chemical Society Reviews, 39 (2010) 3115–3141.CrossRef
    [6]J. W. Kim, J. H. Ryu, K. T. Lee and S. M. Oh, Improvement of silicon powder negative electrodes by copper electroless deposition for lithium secondary batteries, Journal of Power Sources, 147 (2005) 227–233.CrossRef
    [7]M. N. Obrovac and V. L. Chevrier, Alloy negative electrodes for Li-ion batteries, Chem. Rev., 114 (2014) 11444–11502.CrossRef
    [8]C. K. Chan, H. L. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins and Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nature Nanotechnology, 3 (2008) 31–35.CrossRef
    [9]J. Y. Kwon, J. H. Ryu and S. M. Oh, Performance of electrochemically generated Li21Si5 phase for lithium-ion batteries, Electrochimica Acta, 55 (2010) 8051–8055.CrossRef
    [10]Q. Zhang, W. Zhang, W. Wan, Y. Cui and E. Wang, Lithium insertion in silicon nanowires: An ab initio study, Nano Letters, 10 (2010) 3243–3249.CrossRef
    [11]N. A. Liu, L. B. Hu, M. T. McDowell, A. Jackson and Y. Cui, Prelithiated silicon nanowires as an anode for lithium ion batteries, Acs Nano, 5 (2011) 6487–6493.CrossRef
    [12]N. Liu, H. Wu, M. T. McDowell, Y. Yao, C. M. Wang and Y. Cui, A yolk-shell design for stabilized and scalable li-ion battery alloy anodes, Nano Letters, 12 (2012) 3315–3321.CrossRef
    [13]Y. F. Gao, M. Cho and M. Zhou, Mechanical reliability of alloy-based electrode materials for rechargeable Li-ion batteries, Journal of Mechanical Science and Technology, 27 (2013) 1205–1224.CrossRef
    [14]B. Key, M. Morcrette, J.-M. Tarascon and C. P. Grey, Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: Understanding the (De)lithiation mechanisms, Journal of the American Chemical Society, 133 (2010) 503–512.CrossRef
    [15]J. Christensen and J. Newman, Stress generation and fracture in lithium insertion materials, Journal of Solid State Electrochemistry, 10 (2006) 293–319.CrossRef
    [16]J. C. Li, A. K. Dozier, Y. C. Li, F. Q. Yang and Y. T. Cheng, Crack pattern formation in thin film lithium-ion battery electrodes, Journal of the Electrochemical Society, 158 (2011) A689–A694.CrossRef
    [17]K. J. Zhao, M. Pharr, J. J. Vlassak and Z. G. Suo, Inelastic hosts as electrodes for high-capacity lithium-ion batteries, Journal of Applied Physics, 109 (2011).
    [18]Z. W. Cui, F. Gao and J. M. Qu, A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries, Journal of the Mechanics and Physics of Solids, 60 (2012) 1280–1295.CrossRef MathSciNet
    [19]Y. F. Gao, M. Cho and M. Zhou, Stress relaxation through interdiffusion in amorphous lithium alloy electrodes, Journal of the Mechanics and Physics of Solids, 61 (2013) 579–596.CrossRef MATH
    [20]S. Chang, J. Moon, K. Cho and M. Cho, Multiscale analysis of prelithiated silicon nanowire for Li-ion battery, Computational Materials Science, 98 (2015) 99–104.CrossRef
    [21]J. Moon, B. Lee, M. Cho and K. Cho, Ab initio and kinetic Monte Carlo simulation study of lithiation in crystalline and amorphous silicon, Journal of Power Sources, 272 (2014) 1010–1017.CrossRef
    [22]I. Ryu, J. W. Choi, Y. Cui and W. D. Nix, Size-dependent fracture of Si nanowire battery anodes, Journal of the Mechanics and Physics of Solids, 59 (2011) 1717–1730.CrossRef
    [23]X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu and J. Y. Huang, Size-dependent fracture of silicon nanoparticles during lithiation, Acs Nano, 6 (2012) 1522–1531.CrossRef
    [24]R. Deshpande, Y. Qi and Y. T. Cheng, Effects of concentration-dependent elastic modulus on diffusion-induced stresses for battery applications, Journal of the Electrochemical Society, 157 (2010) A967–A971.CrossRef
    [25]A. F. Bower, P. R. Guduru and V. A. Sethuraman, A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell, Journal of the Mechanics and Physics of Solids, 59 (2011) 804–828.CrossRef MathSciNet MATH
    [26]M. S. Park, E. Park, J. Lee, G. Jeong, K. J. Kim, J. H. Kim, Y. J. Kim and H. Kim, Hydrogen silsequioxane-derived Si/SiOx Nanospheres for high-capacity lithium storage materials, ACS Appl. Mater. Interfaces, 6 (2014) 9608–9613.CrossRef
    [27]J. Moon, K. Cho and M. Cho, Ab-initio study of silicon and tin as a negative electrode materials for lithium-ion batteries, International Journal of Precision Engineering and Manufacturing, 13 (2012) 1191–1197.CrossRef
    [28]V. B. Shenoy, P. Johari and Y. Qi, Elastic softening of amorphous and crystalline Li-Si Phases with increasing Li concentration: A first-principles study, Journal of Power Sources, 195 (2010) 6825–6830.CrossRef
    [29]K. Kim, J. Moon, J. Lee, J.-S. Yu, M. Cho, K. Cho, M.-S. Park, J.-H. Kim and Y.-J. Kim, Mechanochemically reduced SiO2 by Ti incorporation as lithium storage materials, Chem. Sus. Chem., 8 (2015) 3111–3117.CrossRef
    [30]J. W. Wang, Y. He, F. F. Fan, X. H. Liu, S. M. Xia, Y. Liu, C. T. Harris, H. Li, J. Y. Huang, S. X. Mao and T. Zhu, Two-phase electrochemical lithiation in amorphous silicon, Nano Letters, 13 (2013) 709–715.CrossRef
    [31]M. T. McDowell, S. W. Lee, J. T. Harris, B. A. Korgel, C. M. Wang, W. D. Nix and Y. Cui, In Situ TEM of two-phase lithiation of amorphous silicon nanospheres, Nano Letters, 13 (2013) 758–764.CrossRef
    [32]Z. W. Cui, F. Gao, Z. H. Cui and J. M. Qu, A second nearest-neighbor embedded atom method interatomic potential for Li-Si alloys, Journal of Power Sources, 207 (2012) 150–159.CrossRef
    [33]A. S. Fedorov, Z. I. Popov, A. A. Kuzubov and S. G. Ovchinnikov, Theoretical study of the diffusion of lithium in crystalline and amorphous silicon, Jetp Letters, 95 (2012) 143–147.CrossRef
    [34]G. A. Tritsaris, K. Zhao, O. U. Okeke and E. Kaxiras, Diffusion of lithium in bulk amorphous silicon: A theoretical study, The Journal of Physical Chemistry C, 116 (2012) 22212–22216.CrossRef
    [35]X. C. Zhang, W. Shyy and A. M. Sastry, Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles, Journal of the Electrochemical Society, 154 (2007) A910–A916.CrossRef
    [36]T. H. H. Pian, Finite elements based on consistently assumed stresses and displacements, Finite Elements in Analysis and Design, 1 (1985) 131–140.CrossRef MATH
    [37]S. W. Lee, M. T. McDowell, J. W. Choi and Y. Cui, Anomalous shape changes of silicon nanopillars by electro-chemical lithiation, Nano Letters, 11 (2011) 3034–3039.CrossRef
    [38]M. H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui and J. Cho, Silicon nanotube battery anodes, Nano Letters, 9 (2009) 3844–3847.CrossRef
    [39]L. B. Hu, H. Wu, Y. F. Gao, A. Y. Cao, H. B. Li, J. McDough, X. Xie, M. Zhou and Y. Cui, Silicon-carbon nanotube coaxial sponge as li-ion anodes with high areal capacity, Advanced Energy Materials, 1 (2011) 523–527.CrossRef
  • 作者单位:Seongmin Chang (1)
    Janghyuk Moon (1)
    Maenghyo Cho (1)

    1. Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 151-742, Korea
  • 刊物类别:Engineering
  • 刊物主题:Mechanical Engineering
    Structural Mechanics
    Control Engineering
    Industrial and Production Engineering
  • 出版者:The Korean Society of Mechanical Engineers
  • ISSN:1976-3824
文摘
Silicon (Si) is one of the most promising anodes for next-generation lithium (Li)-ion batteries because of its high capacity. However, the commercial uses of Si anodes are hindered by extremely poor cycling stability caused by huge volume expansion during charging and discharging processes as well as by a change in material properties according to Li concentration. Given these reasons, we propose the multiscale analysis of Si nanowire anode using a diffusion-induced stress model with Li concentration effects, such as softening of mechanical modulus and enhancement of Li diffusion. From the geometry context, the diffusion-induced stress model exhibits stress relaxation during the lithiation and optimal condition of the Si nanowire. We then construct an approximated stress criteria equation for the safe operation of Si nanowire of various sizes and shapes. Our multiscale analysis predicts the various types of Si nanowire, including holecaped Si nanowires, which are beneficial to mechanical stability. This study provides insights into the physics of Li-Si compound behaviors and introduces the possibility of developing Si-based anodes with mechanical stability.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700