Active Region Emergence and Remote Flares
详细信息    查看全文
  • 作者:Yixing Fu ; Brian T. Welsch
  • 关键词:Active regions ; magnetic fields ; Flares ; relation to magnetic field ; Flares ; forecasting ; Magnetic fields ; models
  • 刊名:Solar Physics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:291
  • 期:2
  • 页码:383-410
  • 全文大小:2,539 KB
  • 参考文献:Altschuler, M.D., Newkirk, G.: 1969, Magnetic fields and the structure of the solar corona. Solar Phys. 9, 131. ADS
    Antiochos, S.K., DeVore, C.R., Klimchuk, J.A.: 1999, A model for solar coronal mass ejections. Astrophys. J. 510, 485. ADS CrossRef
    Balasubramaniam, K.S., Pevtsov, A.A., Cliver, E.W., Martin, S.F., Panasenco, O.: 2011, The disappearing solar filament of 2003 June 11: a three-body problem. Astrophys. J. 743, 202. DOI . ADS CrossRef
    Bruzek, A.: 1952, Über die Ursache der “Plötzlichen” Filamentauflösungen. Mit 4 Textabbildungen. Z. Astrophys. 31, 99. ADS
    Bumba, V., Howard, R.: 1965, Large-scale distribution of solar magnetic fields. Astrophys. J. 141, 1502. DOI . ADS CrossRef
    Cheung, M.C.M., DeRosa, M.L.: 2012, A method for data-driven simulations of evolving solar active regions. Astrophys. J. 757, 147. DOI . ADS CrossRef
    Chintzoglou, G., Zhang, J.: 2013, Reconstructing the subsurface three-dimensional magnetic structure of a solar active region using SDO/HMI observations. Astrophys. J. Lett. 764, L3. DOI . ADS CrossRef
    Dalla, S., Fletcher, L., Walton, N.A.: 2007, Flare productivity of newly-emerged paired and isolated solar active regions. Astron. Astrophys. 468, 1103. DOI . ADS CrossRef
    Dalla, S., Fletcher, L., Walton, N.A.: 2008, Invisible sunspots and rate of solar magnetic flux emergence. Astron. Astrophys. 479, L1. DOI . ADS CrossRef
    Dove, J.B., Gibson, S.E., Rachmeler, L.A., Tomczyk, S., Judge, P.: 2011, A ring of polarized light: evidence for twisted coronal magnetism in cavities. Astrophys. J. Lett. 731, L1. DOI . ADS CrossRef
    Emslie, A.G., Dennis, B.R., Shih, A.Y., Chamberlin, P.C., Mewaldt, R.A., Moore, C.S., Share, G.H., Vourlidas, A., Welsch, B.T.: 2012, Global energetics of thirty-eight large solar eruptive events. Astrophys. J. 759, 71. DOI . ADS CrossRef
    Feynman, J., Martin, S.F.: 1995, The initiation of coronal mass ejections by newly emerging magnetic flux. J. Geophys. Res. 100, 3355. DOI . ADS CrossRef
    Fisher, G.H., Longcope, D.W., Metcalf, T.R., Pevtsov, A.A.: 1998, Coronal heating in active regions as a function of global magnetic variables. Astrophys. J. 508, 885. ADS CrossRef
    Fludra, A., Ireland, J.: 2008, Radiative and magnetic properties of solar active regions. I. Global magnetic field and EUV line intensities. Astron. Astrophys. 483, 609. DOI . ADS CrossRef
    Forbes, T.G.: 2000, A review on the genesis of coronal mass ejections. J. Geophys. Res. 105, 23153. ADS CrossRef
    Freeland, S.L., Handy, B.N.: 1998, Data analysis with the SolarSoft system. Solar Phys. 182, 497. DOI . ADS CrossRef
    Georgoulis, M.K., Titov, V.S., Mikić, Z.: 2012, Non-neutralized electric current patterns in solar active regions: origin of the shear-generating Lorentz force. Astrophys. J. 761, 61. DOI . ADS CrossRef
    González Hernández, I., Hill, F., Lindsey, C.: 2007, Calibration of seismic signatures of active regions on the far side of the Sun. Astrophys. J. 669, 1382. DOI . ADS CrossRef
    Harvey, K.L., Zwaan, C.: 1993, Properties and emergence of bipolar active regions. Solar Phys. 148, 85. ADS CrossRef
    Heyvarts, J., Priest, E.R., Rust, D.M.: 1977, An emerging flux model for the solar flare phenoma. Astrophys. J. 216, 123. ADS CrossRef
    Hudson, H., Fletcher, L., McTiernan, J.: 2014, Cycle 23 variation in solar flare productivity. Solar Phys. 289, 1341. DOI . ADS CrossRef
    Kazachenko, M.D., Canfield, R.C., Longcope, D.W., Qiu, J.: 2010, Sunspot rotation, flare energetics, and flux rope helicity: the halloween flare on 2003 October 28. Astrophys. J. 722, 1539. DOI . ADS CrossRef
    Leka, K.D., Barnes, G.: 2003, Photospheric magnetic field properties of flaring versus flare-quiet active regions. I. Data, general approach, and sample results. Astrophys. J. 595, 1277. ADS CrossRef
    Leka, K.D., Canfield, R.C., McClymont, A.N., van Driel Gesztelyi, L.: 1996, Evidence for current-carrying emerging flux. Astrophys. J. 462, 547. ADS CrossRef
    Leka, K.D., Barnes, G., Birch, A.C., Gonzalez-Hernandez, I., Dunn, T., Javornik, B., Braun, D.C.: 2013, Helioseismology of pre-emerging active regions. I. Overview, data, and target selection criteria. Astrophys. J. 762, 130. DOI . ADS CrossRef
    Liewer, P.C., González Hernández, I., Hall, J.R., Lindsey, C., Lin, X.: 2014, Testing the reliability of predictions of far-side active regions from helioseismology using STEREO far-side observations of solar activity. Solar Phys. 289, 3617. DOI . ADS CrossRef
    Liggett, M., Zirin, H.: 1985, Emerging flux in active regions. Solar Phys. 97, 51. DOI . ADS CrossRef
    Longcope, D.W., McKenzie, D., Cirtain, J., Scott, J.: 2005, Observations of separator reconnection to an emerging active region. Astrophys. J. 630, 596. ADS CrossRef
    Luhmann, J.G., Li, Y., Zhao, X., Yashiro, S.: 2003, Coronal Magnetic Field Context of Simple CMEs Inferred from Global Potential Field Models. Solar Phys. 213, 367. DOI . ADS CrossRef
    Mallman, E.P., Parsons, T.: 2008, A global search for stress shadows. J. Geophys. Res. 113, 12304. DOI . ADS CrossRef
    Martin, S.F.: 1998, Conditions for the formation and maintenance of filaments – (invited review). Solar Phys. 182, 107. ADS CrossRef
    Martin, S.F., Dezso, L., Antalova, A., Kucera, A., Harvey, K.L.: 1982, Emerging magnetic flux, flares and filaments – FBS interval 16 – 23 June 1980. Adv. Space Res. 2, 39. DOI . ADS CrossRef
    McClymont, A.N., Fisher, G.H.: 1989, On the mechanical energy available to drive solar flares. AGU Geophys. Mon. Ser. 54, 219.
    Moon, Y.J., Choe, G.S., Park, Y.D., Wang, H., Gallagher, P.T., Chae, J., Yun, H.S., Goode, P.R.: 2002, Statistical evidence for sympathetic flares. Astrophys. J. 574, 434. DOI . ADS CrossRef
    Pevtsov, A.A.: 2000, Transequatorial loops in the solar corona. Astrophys. J. 531, 553. DOI . ADS CrossRef
    Pevtsov, A.A., Kazachenko, M.: 2004, On the role of the large-scale magnetic reconnection in the coronal heating. In: Walsh, R.W., Ireland, J., Danesy, D., Fleck, B. (eds.) SOHO 15 Coronal Heating, ESA SP-575, 241.
    Priest, E.: 2014, Magnetohydrodynamics of the Sun, Cambridge University Press, Cambridge.
    Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI . ADS CrossRef
    Scherrer, P., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A., Schou, J., Rosenberg, W., Springer, L., Tarbell, T., Title, A., Wolfson, C., Zayer, I., The MDI Engineering Team: 1995, The solar oscillations investigation – Michelson Doppler imager. Solar Phys. 162, 129. ADS
    Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229. DOI . ADS CrossRef
    Schrijver, C.J., DeRosa, M.L.: 2003, Photospheric and heliospheric magnetic fields. Solar Phys. 212, 165. ADS CrossRef
    Schrijver, C.J., Higgins, P.A.: 2015, A Statistical Study of Distant Consequences of Large Solar Energetic Events. Solar Phys. 290, 2943. DOI . ADS CrossRef
    Schrijver, C.J., Title, A.M.: 2011, Long-range magnetic couplings between solar flares and coronal mass ejections observed by SDO and STEREO. J. Geophys. Res. 116, 4108. DOI . CrossRef
    Schrijver, C.J., Zwaan, C.: 2000, Solar and Stellar Magnetic Activity, Cambridge University Press, Cambridge. CrossRef
    Schrijver, C.J., DeRosa, M.L., Title, A.M., Metcalf, T.R.: 2005, The nonpotentiality of active-region coronae and the dynamics of the photospheric magnetic field. Astrophys. J. 628, 501. ADS CrossRef
    Sun, X., Hoeksema, J.T., Liu, Y., Wiegelmann, T., Hayashi, K., Chen, Q., Thalmann, J.: 2012, Evolution of magnetic field and energy in a major eruptive active region based on SDO/HMI observation. Astrophys. J. 748, 77. DOI . ADS CrossRef
    Tarr, L., Longcope, D.: 2012, Calculating energy storage due to topological changes in emerging active region NOAA AR 11112. Astrophys. J. 749, 64. DOI . ADS CrossRef
    Tarr, L.A., Longcope, D.W., McKenzie, D.E., Yoshimura, K.: 2014, Quiescent reconnection rate between emerging active regions and preexisting field, with associated heating: NOAA AR 11112. Solar Phys. 289, 3331. DOI . ADS CrossRef
    Toriumi, S., Yokoyama, T.: 2011, Numerical experiments on the two-step emergence of twisted magnetic flux tubes in the Sun. Astrophys. J. 735, 126. DOI . ADS CrossRef
    Török, T., Leake, J.E., Titov, V.S., Archontis, V., Mikić, Z., Linton, M.G., Dalmasse, K., Aulanier, G., Kliem, B.: 2014, Distribution of electric currents in solar active regions. Astrophys. J. Lett. 782, L10. DOI . ADS CrossRef
    Wang, Y.M., Sheeley, N.R. Jr.: 1999, Filament eruptions near emerging bipoles. Astrophys. J. Lett. 510, L157. DOI . ADS CrossRef
    Watson, F., Fletcher, L., Dalla, S., Marshall, S.: 2009, Modelling the longitudinal asymmetry in sunspot emergence: the role of the Wilson depression. Solar Phys. 260, 5. DOI . ADS CrossRef
    Welsch, B.T.: 2006, Magnetic flux cancellation and coronal magnetic energy. Astrophys. J. 638, 1101. ADS CrossRef
    Wheatland, M.S.: 2001, Rates of flaring in individual active regions. Solar Phys. 203, 87. DOI . ADS CrossRef
    Yeates, A.R., Mackay, D.H., van Ballegooijen, A.A.: 2008, Modelling the global solar corona II: coronal evolution and filament chirality comparison. Solar Phys. 247, 103. DOI . ADS CrossRef
  • 作者单位:Yixing Fu (1) (2)
    Brian T. Welsch (3) (4)

    1. Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854, USA
    2. Department of Physics, University of California, Berkeley, CA, 94720-1056, USA
    3. Deptartment of Natural & Applied Sciences, University of Wisconsin – Green Bay, Green Bay, WI, 54311, USA
    4. Space Sciences Laboratory, University of California, Berkeley, CA, 94720-7450, USA
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Astronomy
    Extraterrestrial Physics and Space Sciences
    Astrophysics
  • 出版者:Springer Netherlands
  • ISSN:1573-093X
文摘
We study the effect of new emerging solar active regions on the large-scale magnetic environment of existing regions. We first present a theoretical approach to quantify the “interaction energy” between new and pre-existing regions as the difference between i) the summed magnetic energies of their individual potential fields and ii) the energy of their superposed potential fields. We expect that this interaction energy can, depending upon the relative arrangements of newly emerged and pre-existing magnetic flux, indicate the existence of “topological” free magnetic energy in the global coronal field that is independent of any “internal” free magnetic energy due to coronal electric currents flowing within the newly emerged and pre-existing flux systems. We then examine the interaction energy in two well-studied cases of flux emergence, but find that the predicted energetic perturbation is relatively small compared to energies released in large solar flares. Next, we present an observational study of the influence of the emergence of new active regions on flare statistics in pre-existing active regions, using NOAA’s Solar Region Summary and GOES flare databases. As part of an effort to precisely determine the emergence time of active regions in a large event sample, we find that emergence in about half of these regions exhibits a two-stage behavior, with an initial gradual phase followed by a more rapid phase. Regarding flaring, we find that the emergence of new regions is associated with a significant increase in the occurrence rate of X- and M-class flares in pre-existing regions. This effect tends to be more significant when pre-existing and new emerging active regions are closer. Given the relative weakness of the interaction energy, this effect suggests that perturbations in the large-scale magnetic field, such as topology changes invoked in the “breakout” model of coronal mass ejections, might play a significant role in the occurrence of some flares.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700