Development of Active Regions: Flows, Magnetic-Field Patterns and Bordering Effect
详细信息    查看全文
  • 作者:A. V. Getling ; R. Ishikawa ; A. A. Buchnev
  • 关键词:Velocity fields ; photosphere ; Magnetic fields ; Active regions ; Sunspots
  • 刊名:Solar Physics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:291
  • 期:2
  • 页码:371-382
  • 全文大小:2,899 KB
  • 参考文献:Bumba, V.: 1963, Relation between motions and local magnetic fields in the photosphere. Bull. Astron. Inst. Czechoslov. 14, 1. ADS . ADS
    Bumba, V.: 1967, Observations of solar magnetic and velocity fields. In: Rendiconti della Scuola Internazionale di Fisica “E. Fermi”, 39 Corso, 77.
    Bumba, V., Howard, R.: 1965, A study of the development of active regions on the Sun. Astrophys. J. 141, 1492. DOI . ADS . ADS CrossRef
    Caligari, P., Moreno-Insertis, F., Schüssler, M.: 1995, Emerging flux tubes in the solar convection zone. I. Asymmetry, tilt, and emergence latitude. Astrophys. J. 441, 886. DOI . ADS . ADS CrossRef
    Caligari, P., Schüssler, M., Moreno-Insertis, F.: 1998, Emerging flux tubes in the solar convection zone. II. The influence of initial conditions. Astrophys. J. 502, 481. DOI . ADS . ADS CrossRef
    Cattaneo, F.: 1999, On the origin of magnetic fields in the quiet photosphere. Astrophys. J. Lett. 515, L39. DOI . ADS . ADS CrossRef
    Fan, Y.: 2009, Magnetic fields in the solar convection zone. Living Rev. Solar Phys. 6, 4. ADS CrossRef
    Fan, Y., Featherstone, N., Fang, F.: 2013, Three-dimensional MHD simulations of emerging active region flux in a turbulent rotating solar convective envelope: the numerical model and initial results. ArXiv e-prints, arXiv .
    Getling, A.V., Buchnev, A.A.: 2010, Some structural features of the convective-velocity field in the solar photosphere. Astron. Rep. 54, 254. DOI . ADS . ADS CrossRef
    Getling, A.V., Ishikawa, R., Buchnev, A.A.: 2015, Doubts about the crucial role of the rising-tube mechanism in the formation of sunspot groups. Adv. Space Res. 55, 862. DOI . ADS . ADS CrossRef
    Gurevich, L.E., Lebedinsky, A.I.: 1946, Magnetic field of Sun spots. J. Phys. USSR 10, 337.
    Ichimoto, K., Lites, B., Elmore, D., Suematsu, Y., Tsuneta, S., Katsukawa, Y., Shimizu, T., Shine, R., Tarbell, T., Title, A., Kiyohara, J., Shinoda, K., Card, G., Lecinski, A., Streander, K., Nakagiri, M., Miyashita, M., Noguchi, M., Hoffmann, C., Cruz, T.: 2008, Polarization calibration of the Solar Optical Telescope onboard Hinode. Solar Phys. 249, 233. DOI . ADS . ADS CrossRef
    Kitchatinov, L.L., Mazur, M.V.: 2000, Stability and equilibrium of emerged magnetic flux. Solar Phys. 191, 325. DOI . ADS . ADS CrossRef
    Kitiashvili, I.N., Kosovichev, A.G., Mansour, N.N., Wray, A.A.: 2015, Realistic modeling of local dynamo processes on the Sun. Astrophys. J. 809, 84. DOI . ADS . ADS CrossRef
    Kosovichev, A.G.: 2009, Photospheric and subphotospheric dynamics of emerging magnetic flux. Space Sci. Rev. 144, 175. DOI . ADS . ADS CrossRef
    Kosovichev, A.G., Stenflo, J.O.: 2008, Tilt of emerging bipolar magnetic regions on the Sun. Astrophys. J. Lett. 688, L115. DOI . ADS . ADS CrossRef
    Lites, B.W., Akin, D.L., Card, G., Cruz, T., Duncan, D.W., Edwards, C.G., Elmore, D.F., Hoffmann, C., Katsukawa, Y., Katz, N., Kubo, M., Ichimoto, K., Shimizu, T., Shine, R.A., Streander, K.V., Suematsu, A., Tarbell, T.D., Title, A.M., Tsuneta, S.: 2013, The Hinode spectro-polarimeter. Solar Phys. 283, 579. DOI . ADS . ADS CrossRef
    Lites, B., Casini, R., Garcia, J., Socas-Navarro, H.: 2007, A suite of community tools for spectro-polarimetric analysis. Mem. Soc. Astron. Ital. 78, 148. ADS . ADS
    Luoni, M.L., Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L.: 2011, Twisted flux tube emergence evidenced in longitudinal magnetograms: Magnetic tongues. Solar Phys. 270, 45. DOI . ADS . ADS CrossRef
    Parker, E.N.: 1955, The formation of sunspots from the solar toroidal field. Astrophys. J. 121, 491. DOI . ADS . ADS CrossRef
    Pevtsov, A., Lamb, J.B.: 2006, Plasma flows in emerging sunspots in pictures. In: Leibacher, J., Stein, R.F., Uitenbroek, H. (eds.) Solar MHD Theory and Observations: A High Spatial Resolution Perspective, ASP Conf. Ser. 354, 249. ADS .
    Poisson, M., Mandrini, C.H., Démoulin, P., López Fuentes, M.: 2015, Evidence of twisted flux-tube emergence in active regions. Solar Phys. 290, 727. DOI . ADS . ADS CrossRef
    Rempel, M., Cheung, M.C.M.: 2014, Numerical simulations of active region scale flux emergence: From spot formation to decay. Astrophys. J. 785, 90. DOI . ADS .
    Shimizu, T., Nagata, S., Tsuneta, S., Tarbell, T., Edwards, C., Shine, R., Hoffmann, C., Thomas, E., Sour, S., Rehse, R., Ito, O., Kashiwagi, Y., Tabata, M., Kodeki, K., Nagase, M., Matsuzaki, K., Kobayashi, K., Ichimoto, K., Suematsu, Y.: 2008, Image stabilization system for Hinode (Solar-B) Solar Optical Telescope. Solar Phys. 249, 221. DOI . ADS . ADS CrossRef
    Stein, R.F., Nordlund, Å.: 2012, On the formation of active regions. Astrophys. J. Lett. 753, L13. DOI . ADS . ADS CrossRef
    Suematsu, Y., Tsuneta, S., Ichimoto, K., Shimizu, T., Otsubo, M., Katsukawa, Y., Nakagiri, M., Noguchi, M., Tamura, T., Kato, Y., Hara, H., Kubo, M., Mikami, I., Saito, H., Matsushita, T., Kawaguchi, N., Nakaoji, T., Nagae, K., Shimada, S., Takeyama, N., Yamamuro, T.: 2008, The Solar Optical Telescope of Solar-B (Hinode): The Optical Telescope Assembly. Solar Phys. 249, 197. DOI . ADS . ADS CrossRef
    Tsuneta, S., Ichimoto, K., Katsukawa, Y., Nagata, S., Otsubo, M., Shimizu, T., Suematsu, Y., Nakagiri, M., Noguchi, M., Tarbell, T., Title, A., Shine, R., Rosenberg, W., Hoffmann, C., Jurcevich, B., Kushner, G., Levay, M., Lites, B., Elmore, D., Matsushita, T., Kawaguchi, N., Saito, H., Mikami, I., Hill, L.D., Owens, J.K.: 2008, The Solar Optical Telescope for the Hinode mission: An overview. Solar Phys. 249, 167. DOI . ADS . ADS CrossRef
    Tverskoi, B.A.: 1966, A Contribution to the theory of hydromagnetic self-excitation of regular magnetic fields. Geomagn. Aeron. 6, 7. ADS
    Vögler, A., Schüssler, M.: 2007, A solar surface dynamo. Astron. Astrophys. 465, L43. DOI . ADS . CrossRef
    Warnecke, J., Losada, I.R., Brandenburg, A., Kleeorin, N., Rogachevskii, I.: 2013, Bipolar magnetic structures driven by stratified turbulence with a coronal envelope. Astrophys. J. Lett. 777, 2. ADS . arXiv . CrossRef
    Warnecke, J., Losada, I.R., Brandenburg, A., Kleeorin, N., Rogachevskii, I.: 2015, Bipolar region formation in stratified two-layer turbulence. ArXiv e-prints, arXiv .
  • 作者单位:A. V. Getling (1)
    R. Ishikawa (2)
    A. A. Buchnev (3)

    1. Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
    2. Hinode Science Center, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588, Japan
    3. Institute of Computational Mathematics and Mathematical Geophysics, Novosibirsk, 630090, Russia
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Astronomy
    Extraterrestrial Physics and Space Sciences
    Astrophysics
  • 出版者:Springer Netherlands
  • ISSN:1573-093X
文摘
A qualitative analysis is given of the data on the full magnetic and velocity vector fields in a growing sunspot group, recorded nearly simultaneously with the Solar Optical Telescope on the Hinode satellite. Observations of a young bipolar subregion developing within AR 11313 were carried out on 9 – 10 October 2011. Our aim was to form an idea about the consistency of the observed pattern with the well-known rising-tube model of the formation of bipolar active regions and sunspot groups. We find from our magnetograms that the distributions of the vertical [\(B_{\mathrm {v}}\)] and the horizontal [\(B_{\mathrm {h}}\)] component of the magnetic field over the area of the magnetic subregion are spatially well correlated; in contrast, the rise of a flux-tube loop would result in a qualitatively different pattern, with the maxima of the two magnetic-field components spatially separated: the vertical field would be the strongest where either spot emerges, while the maximum horizontal-field strengths would be reached in between them. A specific feature, which we call the bordering effect, is revealed: some local extrema of \(B_{\mathrm {v}}\) are bordered with areas of locally enhanced \(B_{\mathrm {h}}\). This effect suggests a fountainlike spatial structure of the magnetic field near the \(B_{\mathrm {v}}\) extrema, which is also hardly compatible with the emergence of a flux-tube loop. The vertical-velocity field in the area of the developing active subregion does not exhibit any upflow on the scale of the whole subregion, which should be related to the rising-tube process. Thus, our observational data can hardly be interpreted in the framework of the rising-tube model.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700