Equilibrium states and the magnetization reversal of a linear chain of magnetic moments
详细信息    查看全文
  • 作者:A. M. Shutyy ; D. I. Sementsov
  • 关键词:chain of magnetic dipoles ; magnetization reversal of system ; orientation of domains ; transition to the homogeneous state
  • 刊名:The Physics of Metals and Metallography
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:117
  • 期:2
  • 页码:122-129
  • 全文大小:650 KB
  • 参考文献:1.B. N. Filippov and L. G. Korzunin, “Nonlinear dynamics of domain wall with a vortex internal structure in magnetouniaxial films with planar anisotropy,” J. Exper. Theor. Phys. 94, 315–328 (2002).CrossRef
    2.G. S. Kandaurova, V. Kh. Osadchenko, and A. G. Pashko, “Dynamic systems of concentric ring magnetic domains in a highly anisotropic garnet ferrite film in magnetic fields at infrasonic frequencies,” Phys. Solid State 47, 1879–1885 (2005).CrossRef
    3.D. I. Sementsov and A. M. Shutyi, “Nonlinear regular and stochastic dynamics of magnetization in thin-film structures,” Phys.-Usp. 50, 793–818 (2007).CrossRef
    4.A. M. Shutyi, “Regular and chaotic dynamics of a chain of magnetic dipoles with moment of inertia,” J. Exper. Theor. Phys. 108, 880–889 (2009).CrossRef
    5.B. N. Filippov, F. A. Kassan-Ogly, and M. N. Dubovik, “Structure and dynamic properties of asymmetric vortex-like domain walls in inhomogeneous magnetic films with an in-plane anisotropy: I. Equilibrium structures. Nonlinear dynamics in two-layered films,” Phys. Met. Metallogr. 107 151–163 (2009).CrossRef
    6.R. Skomski, “Nanomagnetics,” J. Phys.: Condens. Matter 15, R841–R896 (2003).
    7.A. A. Eliseev, A. S. Vyacheslavov, A. V. Lukashin, Yu. D. Tretyakov, I. P. Suzdalev, Yu. V. Maximov, and P. Goernert, “Iron-containing nanocomposites based on ZSM-5 zeolite,” Int. J. Nanosci. 5, 459–463 (2006).CrossRef
    8.L. A. Golovan’, V. Yu. Timoshenko, and P. K. Kashkarov, “Optical properties of porous-system-based nanocomposites,” Phys.-Usp. 50, 595–612 (2007).CrossRef
    9.S. A. Gusev, Yu. N. Nozdrin, M. V. Sapozhnikov, and A. A. Fraerman, “Collective effects in artificial twodimensional lattices of ferromagnetic nanoparticles,” Phys.-Usp. 43, 288–291 (2000).CrossRef
    10.I. M. L. Billas, J. A. Becker, A. Chatelain, and W. A. de Heer, “Magnetic moments of iron clusters with 25 to 700 atoms and their dependence on temperature,” Phys. Rev. Lett. 71, 4067–4070 (1993).CrossRef
    11.S. P. Gubin and Yu. A. Koksharov, “Preparation, structure and properties of magnetic materials based on Cocontaining nanoparticles,” Inorg. Mater. 38, 1085–1099 (2002).CrossRef
    12.I. R. Karetnikova, I. M. Nefedov, M. V. Sapozhnikov, A. A. Fraerman, and I. A. Shereshevskii, “Inhomogeneous states and the mechanism of magnetization reversal of a chain of classical dipoles,” Phys. Solid State 43, 2115–2120 (2001).CrossRef
    13.S. S. Sosin, L. A. Prozorova, P. Bonville, and M. E. Zhitomirsky, “Magnetic excitations in the geometrically frustrated pyrochlore antiferromagnet Gd2Sn2O7 studied by electron spin resonance,” Phys. Rev. B: Condens. Matter Mater. Phys. 79, 014419 (2009).CrossRef
    14.W. Sollinger, W. Heiss, R. T. Lechner, K. Rumpf, P. Granitzer, H. Krenn, and G. Springholz, “Exchange interactions in europium monochalcogenide magnetic semiconductors and their dependence on hydrostatic strain,” Phys. Rev. B: Condens. Matter Mater. Phys. 81, 155213 (2010).CrossRef
    15.V. E. Kireev and B. A. Ivanov, “Magnetic vortices in small ferromagnetic particles with the strong dipolar interaction,” J. Exper. Theor. Phys. Lett. 94, 306–310 (2011).CrossRef
    16.O. Kasyutich, R. D. Desautels, B. W. Southern, and J. van Lierop, “Novel aspects of magnetic interactions in a macroscopic 3D nanoparticle-based crystal,” Phys. Rev. Lett. 104, 127205 (2010).CrossRef
    17.V. N. Krivoruchko, M. A. Marchenko, and Y. Melikhov, “Ferromagnetism in SnO2-based multilayers: Clustering of defects induced by doping,” Phys. Rev. B: Condens. Matter Mater. Phys. 82, 064419 (2010).CrossRef
    18.Yu. P. Ivanov, A. I. Il’in, E. V. Pustovalov, K. V. Nefedev, and L. A. Chebotkevich, “Effect of the shape anisotropy and configuration anisotropy on the magnetic structure of ferromagnetic nanodots,” Phys. Met. Metallogr. 113, 222–227 (2012).CrossRef
    19.G. Xiong, D. A. Allwood, M. D. Cooke, and R. P. Cowburn, “Magnetic nanoelements for magnetoelectronics made by focused-ion-beam milling,” Appl. Phys. Lett. 79, 3461–3463 (2001).CrossRef
    20.K.-M. Wu, L. Horng, J.-F. Wang, J.-C. Wu, Y.-H. Wu, and C.-M. Lee, “Influence of asymmetry on vortex nucleation and annihilation in submicroscaled permalloy disk array,” Appl. Phys. Lett. 92, 262507 (2008).CrossRef
    21.S. Goolaup, A. O. Adeyeye, and N. Singh, “Magnetization reversal mechanisms in diamond-shaped Co nanomagnets,” Phys. Rev. B: Condens. Matter Mater. Phys. 73, 104444 (2006).CrossRef
    22.K. S. Buchanan, P. Roy, M. Grimsditch, F. Fradin, K. Y. Guslienko, S. Bader, and V. Novosad, “Magnetic field tuneability of the vortex translational mode in micron-sized permaloy ellipses: Experiment and micromagnetic modeling,” Phys. Rev. B: Condens. Matter Mater. Phys. 74, 064404 (2006).CrossRef
    23.Yu. P. Ivanov, A. I. Il’in, E. V. Pustovalov, and L. A. Chebotkevich, “Influence of induced anisotropy on the processes of magnetization reversal of cobalt circular nanodots,” Phys. Solid State 52, 1694–1699 (2010).CrossRef
    24.A. M. Shutyi, “Exitation of phase transition in dipole lattices,” JETP Lett. 97, 520–525 (2013).CrossRef
    25.A. M. Shutyi, “Orientational transitions in four-row magnetic-dipole lattices,” Phys. Met. Metallogr. 115, 1179–1185 (2014).CrossRef
  • 作者单位:A. M. Shutyy (1)
    D. I. Sementsov (1)

    1. Ul’yanovsk State University, ul. L. Tolstogo 42, Ul’yanovsk, 432970, Russia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Metallic Materials
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1555-6190
文摘
The equilibrium states and specific features of the magnetization reversal of a linear chain of magnetic moments coupled by dipole–dipole and exchange interactions have been investigated based on computer simulation. It has been revealed that, depending on the strength of the exchange interaction, the boundary between the oppositely oriented regions can have both zero and nonzero total magnetic moment. The presence of an easy-axis uniaxial anisotropy makes it possible to obtain stationary states with small domains (up to ones consisting of a single dipole). The processes of relaxation of the chain from a multidomain toward a homogeneous state have been examined.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700