Variability in the response of six genotypes of N2-fixing Medicago ciliaris to NaCl
详细信息    查看全文
  • 作者:Imène Ben Salah (1)
    Tarek Slatni (1)
    Margaret Gruber (4)
    Héla Mahmoudi (3)
    Kais Zribi (2)
    Chedly Abdelly (1)
  • 关键词:Genotypic variability ; Medicago ciliaris ; Symbiotic nitrogen fixation ; Salt tolerance ; Sodium
  • 刊名:Symbiosis
  • 出版年:2011
  • 出版时间:June 2011
  • 年:2011
  • 卷:53
  • 期:3
  • 页码:139-147
  • 全文大小:417KB
  • 参考文献:1. Abd-Alla MH, El-Enamy AE, Hamada AM, Abdel Wahab AM (2001) Element distribution in faba bean nodules under salinity and its effects on growth, nodulation and nitrogen fixation. Rostlinná Vyroba 47:399-04
    2. Abdelkefi A, Boussaid M, Biborchi A, Haddioui A, Salhi-Hannachi A, Marrakchi M (1996) Genetic diversity inventory and evaluation of spontaneous species belonging to / Medicago L. genus in Tunisia. Cah Options Méditerr 18:143-49
    3. Abdelly C, Lachaal M, Grignon C, Soltani A, Hajji M (1995) Association épisodique de halophytes stricts et de glycophytes dans un écosystème naturel. Agronomie 15:557-8 CrossRef
    4. Ashraf M, Bashir A (2003) Salt stress induced changes in some organic metabolites and ionic relations in nodules and other plant parts of two crop legumes differing in salt tolerance. Flora 198:486-98
    5. Aydi S, Sassi S, Abdelly C (2008) Growth, nitrogen fixation and ion distribution in / Medicago truncatula subjected to salt stress. Plant Soil 312:59-7 CrossRef
    6. Badri M, Zitoun A, Soula S, Ilahi H, Huguet T, Aouani ME (2008) Low levels of quantitative and molecular genetic differentiation among natural populations of / Medicago ciliaris Kroch. (Fabaceae) of different Tunisian eco-geographical origin. Conserv Genet 9:1509-520 CrossRef
    7. Ben Salah I, Albacete A, Martínez Andújar C, Haouala R, Labidi N, Zribi F, Martinez V, Pérez-Alfocea F, Abdelly C (2009) Response of nitrogen fixation in relation to nodule carbohydrate metabolism in / Medicago ciliaris lines subjected to salt stress. J Plant Physiol 166:477-88 CrossRef
    8. Ben Salah I, Slatni T, Albacete A, Gandour M, Martínez-Andújar C, Houmani H, Ben Hamed K, Martinez V, Pérez-Alfocea F, Abdelly C (2010) Salt tolerance of nitrogen fixation in / Medicago ciliaris is related to nodule sucrose metabolism performance rather than antioxidant system. Symbiosis 51:187-95 CrossRef
    9. Ben Salah I, Slatni T, Gruber M, Messedi D, Gandour M, Benzarti M, Haouala R, Zribi K, Ben Hamed K, Perez-Alfocea F, Abdelly C (2011) Relationship between symbiotic nitrogen fixation, sucrose synthesis and anti-oxidant activities in source leaves of two / Medicago ciliaris lines cultivated under salt stress. Env Exp Bot 70:66-73
    10. Boughanmi N, Michonneau P, Verdus MC, Piton F, Ferjani E, Bizid E, Fleurat-Lessard P (2003) Structural changes induced by NaCl in companion and transfer cells of / Medicago sativa blades. Protoplasma 220:179-87 CrossRef
    11. Cordovilla MP, Ligero F, Lluch C (1995) Influence of host genotypes on growth, symbiotic performance and nitrogen assimilation in faba bean ( / Vicia faba L.) under salt stress. Plant Soil 172:289-97 CrossRef
    12. Georgiev GI, Atkins CA (1993) Effects of salinity on N2 fixation, nitrogen metabolism and export and diffusive conductance of cowpea root nodules. Symbiosis 15:239-55
    13. Jebara S, Drevon JJ, Jebara M (2010) Modulation of symbiotic efficiency and nodular antioxidant enzyme activities in two / Phaseolus vulgaris genotypes under salinity. Acta Physiol Plant 32:925-32 CrossRef
    14. Kalia VC, Drevon JJ (1985) Variation in nitrogenase activity (C2H2 reduction) during the / in-situ incubation of nodules of / Glycine max (L.) Merr. C R Acad Sci Fran? Microbiol 6:591-96
    15. Kirizii DA, Vorobei NA, Kots SY (2007) Relationships between nitrogen fixation and photosynthesis as the main components of the productivity in alfalfa. Russ J Plant Physiol 54:666-71 CrossRef
    16. Kjeldahl JZ (1883) A new method for the determination of nitrogen in organic bodies. Anal Chem Anal Chem 22:366
    17. Lauchli A (1984) Salt exclusion: an adaptation of legumes for crops and pastures under saline conditions. In: Staples RC, Toenniessen GH (eds) Salinity tolerance in plants. Wiley, New York, pp 171-87
    18. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651-81 CrossRef
    19. Norlyn JD, Epstein E (1984) Variability in salt tolerance of four triticale lines at germination and emergence. Crop Sci 24:1090-992 CrossRef
    20. Raven JA (1985) Regulation of pH and generation of osmolarity in vascular plants: a cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytol 101:25-7 CrossRef
    21. Saadallah K, Drevon JJ, Abdelly C (2001) Nodulation et croissance nodulaire chez le haricot ( / Phaseolus vulgaris) sous contrainte saline. Agronomie 21:627-34 CrossRef
    22. Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna R, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol 136:2483-499 CrossRef
    23. Serraj R, Vasquez DH, Drevon JJ (1998) Effects of salt stress on nitrogen fixation, oxygen diffusion and ion distribution in soybean, common bean and alfalfa. J Plant Nutr 21:475-88 CrossRef
    24. Singleton PW, Bohlool BB (1983) Effect of salinity on the functional components of the soybean- / Rhizobium japonicum symbiosis. Crop Sci 23:815-18 CrossRef
    25. Tejera NA, Soussi M, Lluch C (2006) Physiological and nutritional indicators of tolerance to salinity in chickpea plants growing under symbiotic conditions. Env Exp Bot 58:17-4 CrossRef
    26. Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503-27 CrossRef
    27. Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 12:615-20 CrossRef
    28. Yamamouchi M, Tanaka S, Fujiyama H (1997) The cultivarietal differences in salt-tolerance and the effect on the absorption and translocation of K+, Ca2+ and Mg2+ ions in / Phaseolus vulgaris L. J Jpn Soc Hortic Sci 65:737-45 CrossRef
    29. Zribi K, Badri Y, Saidi S, van Berkum P, Aouani ME (2007) / Medicago ciliaris growing in Tunisian soils is preferentially nodulated by / Sinorhizobium medicae. Aust J Soil Res 45:473-77 CrossRef
  • 作者单位:Imène Ben Salah (1)
    Tarek Slatni (1)
    Margaret Gruber (4)
    Héla Mahmoudi (3)
    Kais Zribi (2)
    Chedly Abdelly (1)

    1. Laboratoire des Plantes Extrêmophiles, Centre of Biotechnologie of Borj Cedria, BP 901, 2050, Hammam-Lif, Tunisia
    4. Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Cresc., Saskatoon, SK, S7N0X2, Canada
    3. Physiologie et Biochimie de la Tolérance au Sel des Plantes, Faculté des Sciences de Tunis, Campus Universitaire, 2092, Tunis El Manar, Tunisia
    2. Laboratoire des Légumineuses, Centre of Biotechnologie of Borj Cedria, BP 901, 2050, Hammam-Lif, Tunisia
文摘
Genotypic variability was assessed within six Medicago ciliaris genotypes growing symbiotically with Sinorhizobium medicae in order to identify physiological criteria (growth, ion content, and plant health) associated with salt tolerance. Response to salt stress depended on the line and the level of salt. Two lines with lower dry biomass under non-saline conditions (TNC 1.8 from a semi-arid area and TNC 10.8 from a sub-humid area), were more tolerant to NaCl, whereas the most productive lines (TNC 11.5 and TNC 11.9 from a humid bioclime) were more sensitive in terms of growth and nitrogen fixation. Susceptibility of symbiotic nitrogen fixation to saline stress was not associated with a higher accumulation of Na+ in nodules, since the most tolerant lines TNC 1.8 and TNC 10.8 accumulated the highest Na+ amount in nodules. Leaf area and net photosynthate assimilation rate were conserved in line TNC 1.8 and to a lesser extent in line TNC 10.8 potentially owing to a greater ability to protect aerial organs and nodules from Na+ damage and to insure a better supply of leaves with nitrogen. Our results suggest that nodule growth and number and nodule Na+ content should not be used as selection tools for tolerance or susceptibility, since two of the tested lines maintained consistent growth in spite of reduced nodule and high Na+ content. Instead, the most reliable physiological indicators for tolerance appear to be consistent growth (i.e., no growth changes) and reduced leaf Na+ accumulation with increasing concentrations of NaCl.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700