Competing Noncovalent Host-guest Interactions and H/D Exchange: Reactions of Benzyloxycarbonyl-Proline Glycine Dipeptide Variants with ND3
详细信息    查看全文
  • 作者:Mahsan Miladi ; Abayomi D. Olaitan…
  • 关键词:Ion mobility ; Host ; guest ; H/D exchange ; Adduct formation ; Ion ; molecule reactions
  • 刊名:Journal of The American Society for Mass Spectrometry
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:26
  • 期:11
  • 页码:1938-1949
  • 全文大小:1,154 KB
  • 参考文献:1.Hu, Q.D., Tang, G.P., Chu, P.K.: Cyclodextrin-based host–guest supramolecular nanoparticles for delivery: from design to applications. Acc. Chem. Res. 47, 2017-025 (2014)CrossRef
    2.Houk, K.N., Leach, A.G., Kim, S.P., Zhang, X.: Binding affinities of host–guest, protein–ligand, and protein–transition state complexes. Angew. Chem. Int. Ed. Engl. 42, 4872-897 (2003)CrossRef
    3.Zheng, J., Chen, C., Wang, X., Zhang, F., He, P.: A sequence-specific DNA sensor for Hepatitis B virus diagnostics based on the host–guest recognition. Sensors Actuators B 199, 168-74 (2014)CrossRef
    4.Kriz, D., Ramstr?m, O., Mosbach, K.: Molecular imprinting: new possibilities for sensor technology. Anal. Chem. 69, 345A-49A (1997)CrossRef
    5.Boekhoven, J., Rubert Perez, C.M., Sur, S., Worthy, A., Stupp, S.I.: Dynamic display of bioactivity through host–guest chemistry. Angew. Chem. Int. Ed. Engl. 52, 12077-2080 (2013)CrossRef
    6.Liou, C.-C., Brodbelt, J.S.: Comparison of gas-phase proton and ammonium ion affinities of crown ethers and related acyclic analogs. J. Am. Chem. Soc. 114, 6761-764 (1992)CrossRef
    7.Brodbelt, J.S.: Probing molecular recognition by mass spectrometry. Int. J. Mass Spectrom. 200, 57-9 (2000)CrossRef
    8.Dearden, D.V., Liang, Y., Nicoll, J.B., Kellersberger, K.A.: Study of gas-phase molecular recognition using Fourier transform ion cyclotron resonance mass spectrometry (FTICR/MS). J. Mass Spectrom. 36, 989-97 (2001)CrossRef
    9.Schalley, C.A., Verhaelen, C., Klarner, F.G., Hahn, U., Vogtle, F.: Gas-phase host–guest chemistry of dendritic viologens and molecular tweezers: a remarkably strong effect on dication stability. Angew. Chem. Int. Ed. Engl. 44, 477-80 (2005)CrossRef
    10.Ko, J.Y., Heo, S.W., Lee, J.H., Oh, H.B., Kim, H., Kim, H.I.: Host–guest chemistry in the gas phase: complex formation with 18-crown-6 enhances helicity of alanine-based peptides. J. Phys. Chem. A 115, 14215-4220 (2011)CrossRef
    11.Lee, T.C., Kalenius, E., Lazar, A.I., Assaf, K.I., Kuhnert, N., Grun, C.H., Janis, J., Scherman, O.A., Nau, W.M.: Chemistry inside molecular containers in the gas phase. Nat. Chem. 5, 376-82 (2013)CrossRef
    12.Ryzhov, V., Dunbar, R.C., Cerda, B., Wesdemiotis, C.: Cation-pi effects in the complexation of Na+ and K+ with Phe, Tyr, and Trp in the gas phase. J. Am. Soc. Mass Spectrom. 11, 1037-046 (2000)CrossRef
    13.Zhu, M.M., Rempel, D.L., Zhao, J., Giblin, D.E., Gross, M.L.: Probing Ca2+-induced conformational changes in porcine calmodulin by H/D exchange and ESI-MS: effect of cations and ionic strength. Biochemistry 42, 15388-5397 (2003)CrossRef
    14.Rozman, M., Gaskell, S.J.: Noncovalent interactions of alkali metal cations with singly charged tryptic peptides. J. Mass Spectrom. 45, 1409-415 (2010)CrossRef
    15.Dunbar, R.C., Steill, J.D., Polfer, N.C., Oomens, J.: Metal cation binding to gas-phase penta-alanine: divalent ions restructure the complex. J. Phys. Chem. A 117, 1094-101 (2013)CrossRef
    16.Dunbar, R.C., Berdenb, G., Oomens, J.: How does a small peptide choose how to bind a metal ion? IRMPD and computational survey of CS versus Iminol binding preferences. Int. J. Mass Spectrom. 354/355, 356-64 (2013)CrossRef
    17.Campbell, S., Rodgers, M.T., Marzluff, E.M., Beauchamp, J.L.: Deuterium exchange reactions as a probe of biomolecule structure. Fundamental studies of gas phase H/D exchange reactions of protonated glycine oligomers with D2O, CD3OD, CD3CO2D, and ND3. J. Am. Chem. Soc. 117, 12840-2854 (1995)CrossRef
    18.Green, M.K., Lebrilla, C.B.: Ion-molecule reactions as probes of gas-phase structures of peptides and proteins. Mass Spectrom. Rev. 16, 53-1 (1997)CrossRef
    19.Polfer, N.C., Dunbar, R.C., Oomens, J.: Observation of zwitterion formation in the gas-phase H/D-exchange with CH3OD: solution-phase structures in the gas phase. J. Am. Soc. Mass Spectrom. 18, 512-16 (2007)CrossRef
    20.Rand, K.D., Pringle, S.D., Murphy III, J.P., Fadgen, K.E., Brown, J., Engen, J.R.: Gas-phase hydrogen/deuterium exchange in a traveling wave ion guide for the examination of protein conformations. Anal. Chem. 81, 10019-0028 (2009)CrossRef
    21.Reyzer, M.L., Brodbelt, J.S.: Gas-phase H/D exchange reactions of polyamine complexes: (M + H)+, (M + alkali metal)+, and (M + 2H)2+. J. Am. Soc. Mass Spectrom. 11, 711-21 (2000)CrossRef
    22.Solouki, T., Fort Jr., R.C., Alomary, A., Fattahi, A.: Gas-phase hydrogen-deuterium exchange reactions of a model peptide: FT-ICR and computational analyses of metal induced conformational mutations. J. Am. Soc. Mass Spectrom. 12, 1272-285 (2001)CrossRef
    23.Fattahi, A., Solouki, T.: Conformational analysis of metal complexed model peptides and their fragment ions using FT-ICR MS and gas-phase H/D exchange reactions. Proceedings of the 49th ASMS Conference on Mass Spectrometry and Allied Topics. Chicago, IL, 27-1 May 2001
    24.Fattahi, A., Zekavat, B., Solouki, T.: H/D exchange kinetics: experimental evidence for fo
  • 作者单位:Mahsan Miladi (1)
    Abayomi D. Olaitan (1)
    Behrooz Zekavat (1)
    Touradj Solouki (1)

    1. Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76706, USA
  • 刊物主题:Analytical Chemistry; Biotechnology; Organic Chemistry; Proteomics; Bioinformatics;
  • 出版者:Springer US
  • ISSN:1879-1123
文摘
A combination of density functional theory calculations, hydrogen/deuterium exchange (HDX) reactions, ion mobility-mass spectrometry, and isotope labeling tandem mass spectrometry was used to study gas-phase “host–guest-type interactions of a benzyloxycarbonyl (Z)-capped proline (P) glycine (G) model dipeptide (i.e., Z-PG) and its various structural analogues with ND3. It is shown that in a solvent-free environment, structural differences between protonated and alkali metal ion (Na+, K+, or Cs+)-complexed species of Z-PG affect ND3 adduct formation. Specifically, [Z-PG + H]+ and [Z-PG-OCH3 + H]+ formed gas-phase ND3 adducts ([Z-PG (or Z-PG-OCH3) + H + ND3]+) but no ND3 adducts were observed for [Z-PG + alkali metal]+ or [Z-PG + H -CO2]+. Experimentally measured and theoretically calculated collision cross sections (CCSs) of protonated and alkali metal ion-complexed Z-PG species showed similar trends that agreed with the observed structural differences from molecular modeling results. Moreover, results from theoretical ND3 affinity calculations were consistent with experimental HDX observations, indicating a more stable ND3 adduct for [Z-PG + H]+ compared to [Z-PG + alkali metal]+ species. Molecular modeling and experimental MS results for [Z-PG + H]+ and [Z-PG + alkali metal]+ suggest that optimized cation–π and hydrogen bonding interactions of carbonyl groups in final products are important for ND3 adduct formation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700