A review of radar remote sensing for biomass estimation
详细信息    查看全文
  • 作者:S. Sinha (1)
    C. Jeganathan (1)
    L. K. Sharma (2)
    M. S. Nathawat (3)

    1. Department of Remote Sensing
    ; Birla Institute of Technology ; Mesra ; Ranchi ; 835215 ; India
    2. Centre for Land Resource Management
    ; Central University of Jharkhand ; Brambe ; Ranchi ; 835205 ; India
    3. School of Sciences
    ; Indira Gandhi National Open University (IGNOU) ; Maidan Garhi ; New Delhi ; 110068 ; India
  • 关键词:Biomass ; Interferometry ; Polarimetry ; SAR ; Uncertainty
  • 刊名:International Journal of Environmental Science and Technology
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:12
  • 期:5
  • 页码:1779-1792
  • 全文大小:329 KB
  • 参考文献:1. Alappat, VO, Joshi, AK, Krishnamurthy, YVN (2011) Tropical dry deciduous forest stand variable estimation using SAR data. J Indian Soc Remote Sens 39: pp. 583-589 CrossRef
    2. Amini, J, Sumantyo, JTS (2009) Employing a method on SAR and optical images for forest biomass estimation. IEEE Trans Geosci Remote Sens 47: pp. 4020-4026 CrossRef
    3. Antropov, O, Rauste, Y, Ahola, H, Hame, T (2013) Stand-level stem volume of boreal forests from spaceborne SAR imagery at L-band. IEEE J Sel Top Appl Earth Obs Remote Sens 6: pp. 35-44 CrossRef
    4. Austin, JM, Mackey, BG, Niel, KP (2003) Estimating forest biomass using satellite radar: an exploratory study in a temperate Australian Eucalyptus forest. For Ecol Manag 176: pp. 575-583 CrossRef
    5. Ban, Y (2003) Synergy of multitemporal ERS-1 SAR and Landsat TM data for classification of agricultural crops. Can J Remote Sens 29: pp. 518-526 CrossRef
    6. Beaudoin, A, Toan, T, Goze, S (1994) Retrieval of forest biomass from SAR data. Int J Remote Sens 15: pp. 2777-2796 CrossRef
    7. Becek K (2009) Biomass representation in synthetic aperture radar interferometry data sets. Dissertation, The University of Brunei Darussalam, Brunei
    8. Carreiras, JMB, Melo, JB, Vasconcelos, MJ (2013) Estimating the above-ground biomass in Miombo savanna woodlands (Mozambique, East Africa) using L-band synthetic aperture radar data. Remote Sens 5: pp. 1524-1548 CrossRef
    9. Congalton, RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37: pp. 35-46 CrossRef
    10. Deepika, B, Avinash, K, Jayappa, KS (2014) Shoreline change rate estimation and its forecast: remote sensing, geographical information system and statistics-based approach. Int J Environ Sci Technol 11: pp. 395-416 CrossRef
    11. Dobson, MC, Ulaby, FT, Toan, T (1992) Dependence of radar backscatter on coniferous forest biomass. IEEE Trans Geosci Remote Sens 30: pp. 412-416 CrossRef
    12. Dungan, JL Toward a comprehensive view of uncertainty in remote sensing analysis. In: Foody, GM, Atkinson, PM eds. (2002) Uncertainty in Remote Sensing and GIS. Wiley, West Sussex, pp. 25-35
    13. Englhart, S, Keuck, V, Siegert, F (2012) Modeling aboveground biomass in tropical forests using multi-frequency SAR data鈥攁 comparison of methods. IEEE J Sel Top Appl Earth Obs Remote Sens 5: pp. 298-306 CrossRef
    14. FAO (2001) Global forest resources assessment 2000鈥攎ain report. FAO Forestry Paper 140, Food and Agriculture Organization of the United Nations, Rome, pp 363
    15. Fatoyinbo, TE, Armstrong, AH Remote characterization of biomass measurements: case study of mangrove forests. In: Momba, M, Bux, F eds. (2010) biomass. InTech Publishers, Croatia
    16. Field, CB, Buitenhuis, ET, Ciais, P (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Nat Acad Sci USA (PNAS) 104: pp. 18866-18870 CrossRef
    17. Foody, GM, Boyd, DS, Cutler, MEJ (2003) Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sens Environ 85: pp. 463-474 CrossRef
    18. Fransson, JES, Smith, G, Askne, J, Olsson, H (2001) Stem volume estimation in boreal forests using ERS-1/2 coherence and SPOT XS optical data. Int J Remote Sens 22: pp. 2777-2791 CrossRef
    19. Gama, FF, Santos, JR, Mura, JC (2010) Eucalyptus biomass and volume estimation using interferometric and polarimetric SAR data. Remote Sens 2: pp. 939-956 CrossRef
    20. Ghasemi, N, Sahebi, MR, Mohammadzadeh, A (2011) A review on biomass estimation methods using synthetic aperture radar data. Int J Geomat Geosci 1: pp. 776-788
    21. Ghasemi, N, Sahebi, MR, Mohammadzadeh, A (2013) Biomass estimation of a temperate deciduous forest using wavelet analysis. IEEE Trans Geosci Remote Sens 51: pp. 765-776 CrossRef
    22. Gibbs, HK, Brown, S, Niles, JO, Foley, JA (2007) Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett 2: pp. 1-13
    23. GTOS (Global Terrestrial Observing System) (2009) Biomass鈥攁ssessment of the status of the development of the standards for the terrestrial essential climate variables.聽Rome, p 18. http://www.fao.org/gtos/doc/ECVs/T12/T12.pdf
    24. Hamdan, O, Aziz, HK, Rahman, KA (2011) Remotely sensed L-band SAR data for tropical forest biomass estimation. J Trop For Sci 23: pp. 318-327
    25. Hame, T, Rauste, Y, Antropov, O, Ahola, HA, Kilpi, J (2013) Improved mapping of tropical forests with optical and SAR imagery, Part II: above ground biomass estimation. IEEE J Sel Top Appl Earth Obs Remote Sens 6: pp. 92-101 CrossRef
    26. Herold M, Brady M, Wulder M, Kalensky D (2007) Biomass ECV report. ftp.fao.org/docrep/fao/011/i0197e/i0197e16.pdf
    27. Hoekman DH, Quinones MJ (1997) Land cover type and forest biomass assessment in the Colombian Amazon. In: Geoscience and remote sensing, 1997. IGARSS 鈥?7. Remote sensing鈥攁 scientific vision for sustainable development. 1997 IEEE International. IEEE IGARSS 4:1728鈥?730
    28. Houghton, RA (2005) Aboveground forest biomass and the global carbon cycle. Global Change Biol 11: pp. 945-958 CrossRef
    29. House, JI, Prentice, IC, Ramankutty, N, Houghton, RA, Heimann, M (2003) Reconciling apparent inconsistencies in estimates of terrestrial CO2 sources and sinks. Tellus 55B: pp. 345-363 CrossRef
    30. Husch, B, Beers, TW, Kershaw, JA (2003) Forest mensuration. Wiley, New Jersey
    31. Hyde, P, Dubayah, R, Walker, W (2006) Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) synergy. Remote Sens Environ 102: pp. 63-73 CrossRef
    32. Imhoff, ML, Johnson, P, Holford, W (2000) BioSar (TM): an inexpensive airborne VHF multiband SAR system for vegetation biomass measurement. IEEE Trans Geosci Remote Sens 38: pp. 1458-1462 CrossRef
    33. Jha, CS, Rangaswamy, M, Murthy, MSR, Vyjayanthi, N (2006) Estimation of forest biomass using Envisat-ASAR data. Proc SPIE 6410: pp. 641002 CrossRef
    34. Kasischke, ES, Melack, JM, Dobson, MC (1997) The use of imaging radars for ecological applications鈥攁 review. Remote Sens Environ 59: pp. 141-156 CrossRef
    35. Keller, M, Palace, M, Hurtt, G (2001) Biomass estimation in the Tapajos National Forest, Brazil: examination of sampling and allometric uncertainties. For Ecol Manage 154: pp. 371-382 CrossRef
    36. Ketterings, QM, Coe, R, Noordwijk, M, Ambagau, K, Palm, CA (2001) Reducing uncertainty in the use of allometric biomass equations for predicting aboveground tree biomass in mixed secondary forests. For Ecol Manage 146: pp. 199-209 CrossRef
    37. Kumar NR (2007) Forest cover, stand volume and biomass assessment in Dudhwa National Park using satellite remote sensing data (optical and EnviSat ASAR). Dissertation, Andhra University, India
    38. Kumar S (2009) Retrieval of forest parameters from Envisat ASAR data for biomass inventory in Dudhwa National Park, UP, India. Dissertation, IIRS, Dehradun, India and ITC, Enschede, Netherlands
    39. Kumar, P, Sharma, LK, Pandey, PC, Sinha, S, Nathawat, MS (2013) Geospatial strategy for tropical forest-wildlife reserve biomass estimation. IEEE J Sel Top Appl Earth Obs Remote Sens 6: pp. 917-923 CrossRef
    40. Kuplich, TM, Salvatori, V, Curran, PJ (2000) JERS-1/SAR backscatter and its relationship with biomass of regenerating forests. Int J Remote Sens 21: pp. 2513-2518 CrossRef
    41. Kurvonen, L, Pulliainen, J, Hallikainen, M (1999) Retrieval of biomass in boreal forests from multitempotal ERS-1 and JERS-1 SAR images. IEEE Trans Geosci Remote Sens 37: pp. 198-205 CrossRef
    42. Toan, TB, Beaudoin, A, Riom, J, Guyon, D (1992) Relating forest biomass to SAR data. IEEE Trans Geosci Remote Sens 30: pp. 403-411 CrossRef
    43. Toan, T, Quegan, S, Davidson, MWJ (2011) The BIOMASS mission: mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sens Environ 115: pp. 2850-2860 CrossRef
    44. Liang J, Zeng GM, Shen S et al. (2013) Bayesian approach to quantify parameter uncertainty and impacts on predictive flow and mass transport in heterogeneous aquifer. Int J Environ Sci Technol. doi:10.1007/s13762-013-0453-3
    45. Loehle, C (2000) Forest ecotone response to climate change: sensitivity to temperature response functional forms. Can J For Res 30: pp. 1632-1645 CrossRef
    46. Lu, D (2005) Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon Basin. Int J Remote Sens 26: pp. 2509-2525 CrossRef
    47. Lu, D (2006) The potential and challenge of remote sensing-based biomass estimation. Int J Remote Sens 27: pp. 1297-1328 CrossRef
    48. Lucas, RM, Cronin, N, Lee, A (2006) Empirical relationships between AIRSAR backscatter and LiDAR-derived forest biomass, Queensland, Australia. Remote Sens Environ 100: pp. 407-425 CrossRef
    49. Lucas, RM, Lee, AC, Bunting, PJ (2008) Retrieving forest biomass through integration of CASI and LiDAR data. Int J Remote Sens 29: pp. 1553-1577 CrossRef
    50. Lucas, RM, Armston, J, Fairfax, R (2010) An evaluation of the ALOS PALSAR L-band backscatter鈥攁bove ground biomass relationship Queensland, Australia: impacts of surface moisture condition and vegetation structure. IEEE J Sel Top Appl Earth Obs Remote Sens 3: pp. 576-593 CrossRef
    51. Luckman, A, Baker, JR, Kuplich, TM, Yanasse, CCF, Frery, AC (1997) A study of the relationship between radar backscatter and regenerating forest biomass for space borne SAR instrument. Remote Sens Environ 60: pp. 1-13 CrossRef
    52. Malhi, YP (2002) Forests, carbon and global climate. Phil Trans R Soc Lond A 360: pp. 1567-1591 CrossRef
    53. Mette T, Papathanassiou K, Hajnsek I (2004) Biomass estimation from polarimetric SAR interferometry over heterogeneous forest terrain. In: Geoscience and remote sensing symposium (IGARSS), 2004 IEEE International. Anchorage, AK. IEEE IGARSS 1:511鈥?14
    54. Nabuurs, GJ, Masera, O, Andrasko, K Forestry. In: Metz, B, Davidson, OR, Bosch, PR, Dave, R, Meyer, LA eds. (2007) Climate change 2007: mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
    55. Neumann M (2009) Remote sensing of vegetation using multi-baseline polarimetric SAR interferometry: theoretical modeling and physical parameter retrieval. Dissertation, University of Rennes 1, France
    56. Nizalapur, V, Jha, CS, Madugundu, R (2010) Estimation of above ground biomass in Indian tropical forested area using multifrequency DLR-ESAR data. Int J Geomat Geosci 1: pp. 167-178
    57. Ouchi, K (2013) Recent trend and advance of synthetic aperture radar with selected topics. Remote Sens 5: pp. 716-807 CrossRef
    58. Patenaude, GM, Milne, R, Dawson, TP (2005) Synthesis of remote sensing approaches for forest carbon estimation: reporting to the Kyoto Protocol. Environ Sci Policy 8: pp. 161-178 CrossRef
    59. Peregon, A, Yamagata, Y (2013) The use of ALOS/PALSAR backscatter to estimate above-ground forest biomass: a case study in Western Siberia. Remote Sens Environ 137: pp. 139-146 CrossRef
    60. Plugge, D, Baldauf, T, Ratsimba, HR, Rajoelison, G, K枚hl, M (2010) Combined biomass inventory in the scope of REDD (reducing emissions from deforestation and forest degradation). Madag Conserv Dev 5: pp. 23-34
    61. Pulliainen, JT, Engdahl, M, Hallikainen, M (2003) Feasibility of multi-temporal interferometric SAR data for stand-level estimation of boreal forest stem volume. Remote Sens Environ 85: pp. 397-409 CrossRef
    62. Ranson, KJ, Sun, G (1994) Mapping biomass of a northern forest using multifrequency SAR data. IEEE Trans Geosci Remote Sens 32: pp. 388-396 CrossRef
    63. Ranson, KJ, Sun, G, Weishampel, JF, Knox, RG (1997) Forest biomass from combined ecosystem and radar backscatter modeling. Remote Sens Environ 59: pp. 118-133 CrossRef
    64. Rauste Y (2005) Techniques for wide-area mapping of forest biomass using radar data. Espoo 2005. VTT Publications, Finland. ISBN 951鈥?8鈥?695鈥?
    65. Roy, PS, Diwakar, PG, Singh, IJ, Bhan, SK (1994) Evaluation of microwave remote sensing data for forest stratification and canopy characterization. J Indian Soc Remote Sens 22: pp. 31-44 CrossRef
    66. Sambatti, JBM, Leduc, R, L眉beck, D, Moreira, JR, Santos, JR (2012) Assessing forest biomass and exploration in the Brazilian Amazon with airborne InSAR: an alternative for REDD. Open Remote Sens J 5: pp. 21-36 CrossRef
    67. Santoro M, Askne J, Dammert PBG (2003) Tree height estimation from multi-temporal ERS SAR interferometric phase. Proceeding of FRINGE 2003 Workshop, 1鈥? Dec 2003, Frascati, Italy
    68. Santoro, M, Eriksson, L, Askne, J, Schmullius, C (2006) Assessment of stand-wise stem volume retrieval in boreal forest from JERS-1 L-band SAR backscatter. Int J Remote Sens 27: pp. 3425-3454 CrossRef
    69. Santos, JR, Pardi Lacruz, MS, Araujo, LS, Keil, M (2002) Savanna and tropical rainforest biomass estimation and spatialization using JERS-1 data. Int J Remote Sens 23: pp. 1217-1229 CrossRef
    70. Santos JR, Neeff T, Dutra LV et al (2004) Tropical forest biomass mapping from dual frequency SAR interferometry (X and P-Bands). In: Twentieth international society for photogrametry and remote sensing (ISPRS) congress. GeoImagery bridging continents, Istanbul, v.XXXV, pp 1133鈥?136
    71. Sharma, LK, Nathawat, MS, Sinha, S (2013) Top-down and bottom-up inventory approach for above ground forest biomass and carbon monitoring in REDD framework using multi-resolution satellite data. Environ Monit Assess 185: pp. 8621-8637 CrossRef
    72. Shen, Z, Xie, H, Chen, L, Qiu, J, Zhong, Y (2015) Uncertainty analysis for nonpoint source pollution modeling: implications for watershed models. Int J Environ Sci Technol 12: pp. 739-746 CrossRef
    73. Shugart, HH, Saatchi, S, Hall, FG (2010) Importance of structure and its measurement in quantifying function of forest ecosystems. J Geophys Res 115: pp. G00E13
    74. Sinha, S, Sharma, LK, Nathawat, MS (2012) Tigers losing grounds: impact of anthropogenic occupancy on tiger habitat suitability using integrated geospatial-fuzzy techniques. The Ecoscan 1: pp. 259-263
    75. Soja M, Sandberg G, Ulander L (2010) Topographic correction for biomass retrieval from P-band SAR data in boreal forests. In: Geoscience and remote sensing symposium (IGARSS), 2010 IEEE International. Honolulu, HI, pp 4776鈥?779
    76. Stephens, BB, Gurney, KR, Tans, PP (2007) Weak northern and strong tropical Land carbon uptake from vertical profiles of atmospheric CO2. Science 316: pp. 1732-1735 CrossRef
    77. Sun, G, Ranson, KJ, Kharuk, VI (2002) Radiometric slope correction for forest biomass estimation from SAR data in the western Sayani Mountains, Siberia. Remote Sens Environ 79: pp. 279-287 CrossRef
    78. Townshend, JR, Masek, JG, Huang, C (2012) Global characterization and monitoring of forest cover using Landsat data: opportunities and challenges. Int J Digit Earth 5: pp. 373-397 CrossRef
    79. Treuhaft, RN, Asner, GP, Law, BE (2003) Structure-based forest biomass from fusion of radar and hyperspectral observations. Geophys Res Lett 30: pp. 1472 CrossRef
    80. Treuhaft, RL, Law, BE, Asner, GP (2004) Forest attributes from radar interferometric structure & its fusion with optical remote sensing. Biosci 54: pp. 561-571 CrossRef
    81. Wiley, CA (1985) Synthetic aperture radars: a paradigm for technology evolution. IEEE Trans Aerosp Electron Syst AES 21: pp. 440-443 CrossRef
    82. Wollersheim, M, Collins, MJ, Leckie, D (2011) Estimating boreal forest species type with airborne polarimetric synthetic aperture radar. Int J Remote Sens 32: pp. 2481-2505 CrossRef
    83. Yavasli, DD (2012) Recent approaches in above ground biomass estimation methods. Aegean Geographical Journal 21: pp. 39-51
    84. Yu, Y, Saatchi, S, Heath, LS (2010) Regional distribution of forest height and biomass from multisensor data fusion. J Geophys 115: pp. G00E12
    85. Zolkos, SG, Goetz, SJ, Dubayah, R (2013) A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sens Environ 128: pp. 289-298 CrossRef
  • 刊物主题:Environment, general; Environmental Science and Engineering; Environmental Chemistry; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution; Soil Science & Conservation; Ecotoxicology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1735-2630
文摘
Forest plays a vital role in regulating climate through carbon sequestration in its biomass. Biomass reflects the health and environmental conditions of a forest ecosystem. In context to the climate change mitigation mechanisms like REDD (reducing emissions from deforestation and forest degradation), an extensive forest monitoring campaign is especially important. Remote sensing of forest structure and biomass with synthetic aperture radar (SAR) bears significant potential for mapping and understanding forest ecological processes. Limitations of the conventional forest inventory procedures, like the extensive cost, labor and time, can be overcome through integrated geospatial techniques. Optical sensor or SAR data are suitable for extracting information about simple and homogeneous forest stand sites. However, optical sensors face serious limitations, specifically in tropical regions, like the cloud cover that SAR can overcome along with targeting saturation and penetration aspects. Simultaneous use of spectral information and image texture parameters improves the biomass assessment over undulating terrain and in radical conditions. Also, synergic use of multi-sensor optical and SAR has better potential than single sensor. Interferometric (InSAR) and polarimetric (PolSAR) SAR or a combination of the both (PolInSAR) serves as effective alternatives. These techniques could serve as valuable methods for biomass assessment of heterogeneous complex biophysical environments. However, SAR data have its own limitations and complexities. Identifying, understanding and solving major uncertainties in different stages of the biomass estimation procedure are critical. In this regard, the current study provides a review of radar remote sensing-based studies in forest biomass estimation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700