Dissolution Rates of Biogenic Carbonates in Natural Seawater at Different pCO2 Conditions: A Laboratory Study
详细信息    查看全文
  • 作者:Mallory Pickett ; Andreas J. Andersson
  • 关键词:CaCO3 dissolution ; Mg ; calcite ; Biogenic ; Carbonate ; Ocean acidification ; CO2
  • 刊名:Aquatic Geochemistry
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:21
  • 期:6
  • 页码:459-485
  • 全文大小:1,667 KB
  • 参考文献:Andersson AJ, Gledhill D (2013) Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Annu Rev Mar Sci 5:321-48CrossRef
    Andersson AJ, Mackenzie FT (2004) Shallow-water oceans: a source or sink of atmospheric CO2? Front Ecol Environ 2:348-53
    Andersson AJ, Mackenzie FT, Ver LM (2003) Solution of shallow-water carbonates: an insignificant buffer against rising atmospheric CO2. Geology 31:513-16CrossRef
    Andersson AJ, Mackenzie FT, Lerman A (2005) Coastal ocean and carbonate systems in the high CO2 world of the Anthropocene. Am J Sci 305:875-18CrossRef
    Andersson AJ, Bates NR, Mackenzie FT (2007) Dissolution of carbonate sediments under rising pCO2 and ocean acidification: observations from Devil’s Hole, Bermuda. Aquat Geochem 13:237-64CrossRef
    Andersson AJ, Mackenzie FT, Bates NR (2008) Life on the margin: implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers. Mar Ecol Prog Ser 373:265-73CrossRef
    Andersson AJ, Kuffner IB, Mackenzie FT, Jokiel PL, Rodgers KS, Tan A (2009)?Net Loss of CaCO3?from a subtropical calcifying community due to seawater acidification: mesocosm-scale experimental evidence. Biogeosciences 6:1811-823
    Andersson AJ, Mackenzie FT, Gattuso J-P (2011) Effects of ocean acidification on benthic processes, organisms, and ecosystems. In: Gattuso J-P, Hansson L (eds) Ocean acidification. Oxford University Press, New York, pp 122-53
    Arakaki T, Mucci A (1995) A continuous and mechanistic representation of calcite reaction-controlled kinetics in dilute solutions at 25 C and 1?atm total pressure. Aquat Geochem 1:105-30CrossRef
    Archer D, Maier-Reimer E (1994) Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367:260-63CrossRef
    Archer D, Emerson S, Reimers C (1989) Dissolution of calcite in deep-sea sediments: pH and O2 microelectrode results. Geochim Cosmochim Acta 53:2831-845CrossRef
    Bischoff WD, Bishop FC, Mackenzie FT (1983) Biogenically produced magnesian calcite; inhomogeneities in chemical and physical properties; comparison with synthetic phases. Am Mineral 68:1183-188
    Bischoff WD, Mackenzie FT, Bishop FC (1987) Stabilities of synthetic magnesian calcites in aqueous solution: comparison with biogenic materials. Geochim Cosmochim Acta 51:1413-423CrossRef
    Bischoff WD, Bertram MA, Mackenzie FT, Bishop FC (1993) Diagenetic stabilization pathways of magnesian calcites. Carbonates Evaporites 8:82-9CrossRef
    Bockmon E, Dickson AG (2014) A seawater filtration method suitable for total dissolved inorganic carbon and pH analyses. Limnol Oceanogr Methods 12:191-95
    Broecker WS, Broecker S (1974) Carbonate dissolution on the western flank of the East Pacific Rise. Studies in Paleoceanography, Spec. Publ. Soc. Econ. Paleontol. Mineral., 20W. W. Hay, 44-7
    Busenberg E, Plummer LN (1986) A comparative study of the dissolution and crystal growth kinetics of calcite and aragonite. Stud Diagenesis 105:139-68
    Busenberg E, Plummer LN (1989) Thermodynamics of magnesian calcite solid-solutions at 25 C and 1?atm total pressure. Geochim Cosmochim Acta 53:1189-208CrossRef
    Chan N, Connolly SR (2013) Sensitivity of coral calcification to ocean acidification: a meta-analysis. Glob Change Biol 19:282-90CrossRef
    Chave KE, Schmalz RF (1966) Carbonate–seawater interactions. Geochim Cosmochim Acta 30:1037-048CrossRef
    Chou L, Garrels RM, Wollast R (1989) Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals. Chem Geol 78:269-82CrossRef
    Comeau S, Carpenter RC, Lantz C, Edmunds PJ (2015) Ocean acidification accelerates dissolution of experimental coral reef communities. Biogeosciences 12:365-72CrossRef
    Cubillas P, K?hler S, Prieto M et al (2005) Experimental determination of the dissolution rates of calcite, aragonite, and bivalves. Chem Geol 216:59-7CrossRef
    Cyronak T, Santos I, Eyre B (2013) Permeable coral reef sediment dissolution driven by elevated pCO2 and pore water advection. Geophys Res Lett 40:4876-881CrossRef
    de Kanel J, Morse JW (1979) A simple technique for surface area determination. J Phys E Sci Instr 12:272CrossRef
    Dickson AG (1993) pH buffers for sea water media based on the total hydrogen ion concentration scale. Deep Sea Res 40:107-18CrossRef
    Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res 34:1733-743CrossRef
    Dickson AG, Sabine CL, Christian JR (2007) Guide to best practices for ocean CO2 measurements. North Pacific Marine Science Organization, Sidney, PICES special publication 3:191
    Erez J, Reynaud S, Silverman J, Schneider K, Allemand D (2011) Coral calcification under ocean acidification and global change. In: Dubinsky S, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer Science + Business Media B. V., Dordrecht,
  • 作者单位:Mallory Pickett (1)
    Andreas J. Andersson (1)

    1. Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0244, USA
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geochemistry
    Hydrogeology
  • 出版者:Springer Netherlands
  • ISSN:1573-1421
文摘
The bulk dissolution rates of six biogenic carbonates (goose barnacle, benthic foraminifera, bryozoan, sea urchin, and two types of coralline algae) and a sample of mixed sediment from the Bermuda carbonate platform were measured in natural seawater at pCO2 values ranging from approximately 3000 to 5500 μatm. This range of pCO2 values encompassed values regularly observed in porewaters at a depth of a few cm in carbonate sediments at shallow water depths (<15 m) on the Bermuda carbonate platform. The biogenic carbonates included calcites of varying Mg content (2-7 mol%) and a range of specific surface areas (0.01-.7 m2 g?) as determined by BET gas adsorption. Measured rates of dissolution increased with increasing pCO2 treatment for all substrates and ranged from 2.5 to 18 μmol g? h?. The highest rates of dissolution were observed for the bryozoans and the lowest rates for the goose barnacles. The relative ranking in dissolution rates between different substrates was consistent at all pCO2 levels, indicating that substrates dissolve sequentially and that some substrates will be more vulnerable than others to rising CO2 and ocean acidification. Furthermore, dissolution rates were found to increase with increasing Mg content, though the relative dissolution rates were observed to be a function of both Mg content and microstructure (surface area). Keywords CaCO3 dissolution Mg-calcite Biogenic Carbonate Ocean acidification CO2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700