Anti-inflammatory/anti-amyloidogenic effects of plasmalogens in lipopolysaccharide-induced neuroinflammation in adult mice
详细信息    查看全文
  • 作者:Masataka Ifuku (1)
    Toshihiko Katafuchi (1)
    Shiro Mawatari (2)
    Mami Noda (3)
    Kiyotaka Miake (4)
    Masaaki Sugiyama (4)
    Takehiko Fujino (2)
  • 关键词:Neuroinflammation ; Phospholipids ; Microglia ; Alzheimer’s disease
  • 刊名:Journal of Neuroinflammation
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:9
  • 期:1
  • 全文大小:3341KB
  • 参考文献:1. Lee JW, Lee YK, Yuk DY, Choi DY, Ban SB, Oh KW, Hong JT: Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of β-amyloid generation. / J Neuroinflammation 2008, 5:37. CrossRef
    2. Deleidi M, Hallett PJ, Koprich JB, Chung CY, Isacson O: The Toll-like receptor-3 agonist polyinosinic:polycytidylic acid triggers nigrostriatal dopaminergic degeneration. / J Neurosci 2010, 30:16091-6101. CrossRef
    3. Okun E, Griffioen K, Barak B, Roberts NJ, Castro K, Pita MA, Cheng A, Mughal MR, Wan R, Ashery U, Mattson MP: Toll-like receptor 3 inhibits memory retention and constrains adult hippocampal neurogenesis. / Proc Natl Acad Sci U S A 2010, 107:15625-5630. CrossRef
    4. Blasko I, Apochal A, Boeck G, Hartmann T, Grubeck-Loebenstein B, Ransmayr G: Ibuprofen decreases cytokine-induced amyloid β production in neuronal cells. / Neurobiol Dis 2001, 8:1094-101. CrossRef
    5. Sastre M, Dewachter I, Landreth GE, Willson TM, Klockgether T, van Leuven F, Heneka MT: Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-γ agonists modulate immunostimulated processing of amyloid precursor protein through regulation of β-secretase. / J Neurosci 2003, 23:9796-804.
    6. Yan Q, Zhang J, Liu H, Babu-Khan S, Vassar R, Biere AL, Citron M, Landreth G: Anti-inflammatory drug therapy alters β-amyloid processing and deposition in an animal model of Alzheimer’s disease. / J Neurosci 2003, 23:7504-509.
    7. Farooqui AA, Horrocks LA: Plasmalogens: workhorse lipids of membranes in normal and injured neurons and glia. / Neuroscientist 2001, 7:232-45. CrossRef
    8. Farooqui AA, Horrocks LA: Plasmalogens, phospholipase A2, and docosahexaenoic acid turnover in brain tissue. / J Mol Neurosci 2001, 16:263-72. discussion 279-84 CrossRef
    9. Farooqui AA: Studies on plasmalogen-selective phospholipase A2 in brain. / Mol Neurobiol 2010, 41:267-73. CrossRef
    10. Khaselev N, Murphy RC: Susceptibility of plasmenyl glycerophosphoethanolamine lipids containing arachidonate to oxidative degradation. / Free Radic Biol Med 1999, 26:275-84. CrossRef
    11. Engelmann B: Plasmalogens: targets for oxidants and major lipophilic antioxidants. / Biochem Soc Trans 2004, 32:147-50. CrossRef
    12. Maeba R, Ueta N: Ethanolamine plasmalogen and cholesterol reduce the total membrane oxidizability measured by the oxygen uptake method. / Biochem Biophys Res Commun 2003, 302:265-70. CrossRef
    13. Yavin E, Gatt S: Oxygen-dependent cleavage of the vinyl -ether linkage of plasmalogens. 2. Identification of the low-molecular-weight active component and the reaction mechanism. / Eur J Biochem 1972, 25:437-46. CrossRef
    14. Ginsberg L, Rafique S, Xuereb JH, Rapoport SI, Gershfeld NL: Disease and anatomic specificity of ethanolamine plasmalogen deficiency in Alzheimer’s disease brain. / Brain Res 1995, 698:223-26. CrossRef
    15. Guan Z, Wang Y, Cairns NJ, Lantos PL, Dallner G, Sindelar PJ: Decrease and structural modifications of phosphatidylethanolamine plasmalogen in the brain with Alzheimer disease. / J Neuropathol Exp Neurol 1999, 58:740-47. CrossRef
    16. Han X, Holtzman DM, McKeel DW: Plasmalogen deficiency in early Alzheimer’s disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. / J Neurochem 2001, 77:1168-180. CrossRef
    17. Ginsberg L, Xuereb JH, Gershfeld NL: Membrane instability, plasmalogen content, and Alzheimer’s disease. / J Neurochem 1998, 70:2533-538. CrossRef
    18. Goodenowe DB, Cook LL, Liu J, Lu Y, Jayasinghe DA, Ahiahonu PW, Heath D, Yamazaki Y, Flax J, Krenitsky KF, Sparks DL, Lerner A, Friedland RP, Kudo T, Kamino K, Morihara T, Takeda M, Wood PL: Peripheral ethanolamine plasmalogen deficiency: a logical causative factor in Alzheimer’s disease and dementia. / J Lipid Res 2007, 48:2485-498. CrossRef
    19. Wood PL, Mankidy R, Ritchie S, Heath D, Wood JA, Flax J, Goodenowe DB: Circulating plasmalogen levels and Alzheimer Disease Assessment Scale-Cognitive scores in Alzheimer patients. / J Psychiat Neurosci 2010, 35:59-2. CrossRef
    20. Perichon R, Moser AB, Wallace WC, Cunningham SC, Roth GS, Moser HW: Peroxisomal disease cell lines with cellular plasmalogen deficiency have impaired muscarinic cholinergic signal transduction activity and amyloid precursor protein secretion. / Biochem Biophys Res Commun 1998, 248:57-1. CrossRef
    21. Mawatari S, Yunoki K, Sugiyama M, Fujino T: Simultaneous preparation of purified plasmalogens and sphingomyelin in human erythrocytes with phospholipase A1 from Aspergillus orizae. / Biosci Biotechnol Biochem 2009, 73:2621-625. CrossRef
    22. Mawatari S, Okuma Y, Fujino T: Separation of intact plasmalogens and all other phospholipids by a single run of high-performance liquid chromatography. / Anal Biochem 2007, 370:54-9. CrossRef
    23. Folch J, Lees M, Sloane Stanley GH: A simple method for the isolation and purification of total lipides from animal tissues. / J Biol Chem 1957, 226:497-09.
    24. Boehm GW, Sparkman NL, Martin LA, Calvert WS: Effects of intraperitoneal lipopolysaccharide on Morris maze performance in year-old and 2-month-old female C57BL/6J mice. / Behav Brain Res 2005, 159:145-51. CrossRef
    25. Shaw KN, Commins S, O’Mara SM: Lipopolysaccharide causes deficits in spatial learning in the watermaze but not in BDNF expression in the rat dentate gyrus. / Behav Brain Res 2001, 124:47-4. CrossRef
    26. Querfurth HW, LaFerla FM: Alzheimer’s disease. / N Engl J Med 2010, 362:329-44. CrossRef
    27. Blasko I, Marx F, Steiner E, Hartmann T, Grubeck-Loebenstein B: TNFα plus IFNγ induce the production of Alzheimer β-amyloid peptides and decrease the secretion of APPs. / FASEB J 1999, 13:63-8.
    28. Reiss D, Beyer K, Engelmann B: Delayed oxidative degradation of polyunsaturated diacyl phospholipids in the presence of plasmalogen phospholipids in vitro. / Biochem J 1997, 323:807-14.
    29. Zoeller RA, Grazia TJ, LaCamera P, Park J, Gaposchkin DP, Farber HW: Increasing plasmalogen levels protects human endothelial cells during hypoxia. / Am J Physiol Heart Circ Physiol 2002, 283:H671-H679.
    30. Urano S, Asai Y, Makabe S, Matsuo M, Izumiyama N, Ohtsubo K, Endo T: Oxidative injury of synapse and alteration of antioxidative defense systems in rats, and its prevention by vitamin E. / Eur J Biochem 1997, 245:64-0. CrossRef
    31. Lohner K, Balgavy P, Hermetter A, Paltauf F, Laggner P: Stabilization of non-bilayer structures by the etherlipid ethanolamine plasmalogen. / Biochim Biophys Acta 1991, 1061:132-40. CrossRef
    32. Breckenridge WC, Morgan IG, Zanetta JP, Vincendon G: Adult rat brain synaptic vesicles. II. Lipid composition. / Biochim Biophys Acta 1973, 320:681-86. CrossRef
    33. Cordy JM, Hussain I, Dingwall C, Hooper NM, Turner AJ: Exclusively targeting β-secretase to lipid rafts by GPI-anchor addition up-regulates β-site processing of the amyloid precursor protein. / Proc Natl Acad Sci U S A 2003, 100:11735-1740. CrossRef
    34. Riddell DR, Christie G, Hussain I, Dingwall C: Compartmentalization of β-secretase (Asp2) into low-buoyant density, noncaveolar lipid rafts. / Curr Biol 2001, 11:1288-293. CrossRef
    35. Butterfield DA, Lauderback CM: Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid β-peptide-associated free radical oxidative stress. / Free Radic Biol Med 2002, 32:1050-060. CrossRef
    36. Christen Y: Oxidative stress and Alzheimer disease. / Am J Clin Nutr 2000, 71:621S-629S.
    37. Grimm MOW, Kuchenbecker J, Rothhaar TL, Grosgen S, Hundsdorfer B, Burg VK, Friess P, Muller U, Grimm HS, Riemenschneider M, Hartmann T: Plasmalogen synthesis is regulated via alkyl-dihydroxyacetonephosphate-synthase by amyloid precursor protein processing and is affected in Alzheimer’s disease. / J Neurochem 2011, 116:916-25. CrossRef
    38. Cimini A, Bernardo A, Cifone MG, Di Marzio L, Di Loreto S: TNFα downregulates PPARδ expression in oligodendrocyte progenitor cells: implications for demyelinating diseases. / Glia 2003, 41:3-4. CrossRef
    39. üllen A, Fauler G, K?feler H, Waltl S, Nusshold C, Bernhart E, Reicher H, Leis HJ, Wintersperger A, Malle E, Sattler W: Mouse brain plasmalogens are targets for hypochlorous acid-mediated modification in vitro and in vivo. / Free Rad Biol Med 2010, 49:1655-665. CrossRef
    40. Latorre E, Collado MP, Fernandez I, Aragones MD, Catalan RE: Signaling events mediating activation of brain ethanolamine plasmalogen hydrolysis by ceramide. / Eur J Biochem 2003, 270:36-6. CrossRef
    41. Frears ER, Stephens DJ, Walters CE, Davies H, Austen BM: The role of cholesterol in the biosynthesis of β-amyloid. / Neuroreport 1999, 10:1699-705. CrossRef
    42. Puglielli L, Tanzi RE, Kovacs DM: Alzheimer’s disease: the cholesterol connection. / Nat Neurosci 2003, 6:345-51. CrossRef
    43. Munn NJ, Arnio E, Liu D, Zoeller RA, Liscum L: Deficiency in ethanolamine plasmalogen leads to altered cholesterol transport. / J Lipid Res 2003, 44:182-92. CrossRef
    44. Mankidy R, Ahiahonu PW, Ma H, Jayasinghe D, Ritchie SA, Khan MA, Su-Myat KK, Wood PL, Goodenowe DB: Membrane plasmalogen composition and cellular cholesterol regulation: a structure activity study. / Lipids Health Dis 2010, 9:62. CrossRef
    45. Chauhan NB: Membrane dynamics, cholesterol homeostasis, and Alzheimer’s disease. / J Lipid Res 2003, 44:2019-029. CrossRef
    46. Simons M, Keller P, De Strooper B, Beyreuther K, Dotti CG, Simons K: Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons. / Proc Natl Acad Sci U S A 1998, 95:6460-464. CrossRef
    47. Kojro E, Gimpl G, Lammich S, Marz W, Fahrenholz F: Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the α-secretase ADAM 10. / Proc Natl Acad Sci U S A 2001, 98:5815-820. CrossRef
    48. Wood PL, Khan MA, Mankidy R, Smith T, Goodenowe DB: Alzheimer’s Disease Pathogenesis-Core Concepts, Shifting Paradigms and Therapeutic Targets. / Plasmalogen deficit: a new and testable hypothesis for the etiology of Alzheimer’s disease 2011. http://www.intechopen.com/books/alzheimer-s-disease-pathogenesis-co re-concepts-shifting-paradigms-and- therapeutic-targets/plasmalogen-deficit-a-new-and-testa ble-hypothesis-for-the-etiology-of- alzheimer-s-disease
    49. Farooqui AA, Horrocks LA, Farooqui T: Modulation of inflammation in brain: a matter of fat. / J Neurochem 2007, 101:577-99. CrossRef
    50. Calon F, Lim GP, Yang F, Morihara T, Teter B, Ubeda O, Rostaing P, Triller A, Salem N, Ashe KH, Frautschy SA, Cole GM: Docosahexaenoic acid protects from dendritic pathology in an Alzheimer's disease mouse model. / Neuron 2004, 43:633-45. CrossRef
    51. Palacios-Pelaez R, Lukiw WJ, Bazan NG: Omega-3 essential fatty acids modulate initiation and progression of neurodegenerative disease. / Mol Neurobiol 2010, 41:367-74. CrossRef
    52. Schmitz G, Ecker J: The opposing effects of n-3 and n-6 fatty acids. / Prog Lipid Res 2008, 47:147-55. CrossRef
    53. Grimm MOW, Kuchenbecker J, Grosgen S, Burg VK, Hundsdorfer B, Rothhaar TL, Friess P, de Wilde MC, Broersen LM, Penke B, Péter M, Vígh L, Grimm HS, Hartmann T: Docosahexaenoic acid reduces amyloid beta production via multiple pleiotropic mechanisms. / J Biol Chem 2011, 286:14028-4039. CrossRef
    54. Walsh DM, Selkoe DJ: Deciphering the molecular basis of memory failure in Alzheimer's disease. / Neuron 2004, 44:181-93. CrossRef
    55. Oksman M, Iivonen H, Hogyes E, Amtul Z, Penke B, Leenders I, Broersen L, Lutjohann D, Hartmann T, Tanila H: Impact of different saturated fatty acid, polyunsaturated fatty acid and cholesterol containing diets on β-amyloid accumulation in APP/PS1 transgenic mice. / Neurobiol Dis 2006, 23:563-72. CrossRef
    56. Scott BL, Bazan NG: Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. / Proc Natl Acad Sci U S A 1989, 86:2903-907. CrossRef
    57. Bernoud N, Fenart L, Moliere P, Dehouck MP, Lagarde M, Cecchelli R, Lecerf J: Preferential transfer of 2-docosahexaenoyl-1-lysophosphatidylcholine through an in vitro blood–brain barrier over unesterified docosahexaenoic acid. / J Neurochem 1999, 72:338-45. CrossRef
    58. Wood PL, Khan MA, Smith T, Ehrmantraut G, Jin W, Cui W, Braverman NE, Goodenowe DB: In vitro and in vivo plasmalogen replacement evaluations in rhizomelic chrondrodysplasia punctata and Pelizaeus-Merzbacher disease using PPI-1011, an ether lipid plasmalogen precursor. / Lipids Health Dis 2011, 10:182. CrossRef
    59. Candela P, Gosselet F, Miller F, Buee-Scherrer V, Torpier G, Cecchelli R, Fenart L: Physiological pathway for low-density lipoproteins across the blood–brain barrier: transcytosis through brain capillary endothelial cells in vitro. / Endothelium 2008, 15:254-64. CrossRef
  • 作者单位:Masataka Ifuku (1)
    Toshihiko Katafuchi (1)
    Shiro Mawatari (2)
    Mami Noda (3)
    Kiyotaka Miake (4)
    Masaaki Sugiyama (4)
    Takehiko Fujino (2)

    1. Department of Integrative Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
    2. Institute of Rheological Function of food, Kasuya-gun, Fukuoka, 811-2501, Japan
    3. Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
    4. Central Research Institute, Marudai Food Co. Ltd, Osaka, 569-8577, Japan
  • ISSN:1742-2094
文摘
Background Neuroinflammation involves the activation of glial cells in neurodegenerative diseases such as Alzheimer’s disease (AD). Plasmalogens (Pls) are glycerophospholipids constituting cellular membranes and play significant roles in membrane fluidity and cellular processes such as vesicular fusion and signal transduction. Methods In this study the preventive effects of Pls on systemic lipopolysaccharide (LPS)-induced neuroinflammation were investigated using immunohistochemistry, real-time PCR methods and analysis of brain glycerophospholipid levels in adult mice. Results Intraperitoneal (i.p.) injections of LPS (250 μg/kg) for seven days resulted in increases in the number of Iba-1-positive microglia and glial fibrillary acidic protein (GFAP)-positive astrocytes in the prefrontal cortex (PFC) and hippocampus accompanied by the enhanced expression of IL-1β and TNF-α mRNAs. In addition, β-amyloid (Aβ3-6)-positive neurons appeared in the PFC and hippocampus of LPS-injected animals. The co-administration of Pls (i.p., 20 mg/kg) after daily LPS injections significantly attenuated both the activation of glial cells and the accumulation of Aβ proteins. Finally, the amount of Pls in the PFC and hippocampus decreased following the LPS injections and this reduction was suppressed by co-treatment with Pls. Conclusions These findings suggest that Pls have anti-neuroinflammatory and anti-amyloidogenic effects, thereby indicating the preventive or therapeutic application of Pls against AD.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700