A 2?V asymmetric supercapacitor based on reduced graphene oxide-carbon nanofiber-manganese carbonate nanocomposite and reduced graphene oxide in aqueous solution
详细信息    查看全文
  • 作者:B. Amutha ; M. Sathish
  • 关键词:Asymmetric supercapacitors ; Nanocomposite ; Graphene ; Manganese carbonate ; Carbon nanofiber
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:19
  • 期:8
  • 页码:2311-2320
  • 全文大小:4,467 KB
  • 参考文献:1.Simon P, Gogotsi Y (2008) Nat Mater 7:845-54View Article
    2.Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum, New YorkView Article
    3.Wang G, Zhang L, Zhang J (2012) Chem Soc Rev 41:797-28View Article
    4.Tang P, Zhao Y, Xu C, Ni K (2013) J Solid State Electrochem 17:1701-710View Article
    5.Jiang J, Li Y, Liu J, Huang Y, Yuan C, Lou XWD (2012) Adv Mater 24:5166-180View Article
    6.Subramani K, Jeyakumar D, Sathish M (2014) Phys Chem Chem Phys 16:4952-961View Article
    7.Sathish M, Mitani S, Tomai T, Honma I (2011) J Mater Chem 21:16216-6222View Article
    8.Wang H, Liu Z, Chen X, Han P, Dong S, Cui G (2011) J Solid State Electrochem 15:1179-184View Article
    9.Xiang X, Liu E, Xie H, Tian Y, Wu Y, Wu Z, Zhu Y (2012) J Solid State Electrochem 16:2661-666View Article
    10.Balducci A, Bardi U, Caporali S, Mastragostino M, Soavi F (2004) Electrochem Commun 6:566-70View Article
    11.Galinski M, Lewandowski A, Stepniak I (2006) Electrochim Act0061 51:5567-580View Article
    12.Mastragostino M, Soavi F (2009) In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B (eds) Capacitors. Electrochemical Capacitors: Ionic Liquid Electrolytes, Encyclopedia of Electrochemical Power Sources. Elsevier, Amsterdam, p 649View Article
    13.Pell WG, Conway BE (2004) J Power Sources 136:334-45View Article
    14.Sathish M, Mitani S, Tomai T, Honma I (2014) J Mater Chem A 2:4731-738View Article
    15.Khomenko V, Raymundo-Pinero E, Beguin F (2006) J Power Sources 153:183-90View Article
    16.Ji J, Zhang LL, Ji H, Li Y, Zhao X, Bai X, Fan X, Zhang F, Ruoff RS (2013) ACS Nano 7:6237-243View Article
    17.Wang YG, Xia YY (2006) J Electrochem Soc 153:A450–A454View Article
    18.Choi BG, Chang SJ, Kang HW, Park CP, Kim HJ, Hong WH, Lee S, Huh YS (2012) Nanoscale 4:4983-988View Article
    19.Cao J, Wang Y, Zhou Y, Ouyang JH, Jia D, Guo L (2013) J Electroanal Chem 689:201-06View Article
    20.Zhang X, Zhao D, Zhao Y, Tang P, Shen Y, Xu C, Li H, Xiao Y (2013) J Mater Chem A 1:3706-712View Article
    21.Fan Z, Yan J, Wei T, Zhi L, Ning G, Li T, Wei F (2011) Adv Funct Mater 21:2366-375View Article
    22.Jiang H, Li C, Sun T, Ma J (2012) Nanoscale 4:807-12View Article
    23.Brousse T, Taberna PL, Crosnier O, Dugas R, Guillemet P, Scudeller Y, Zhou Y, Favier F, Bélanger D, Simon P (2007) J Power Sources 173:633-41View Article
    24.Yuan J, Zhu J, Bi H, Zhang Z, Chen S, Liang S, Wang X (2013) RSC Adv 3:4400-407View Article
    25.Devaraj S, Liu HY, Balaya P (2014) J Mater Chem A 2:4276-281View Article
    26.Zhang LL, Zhao XS (2009) Chem Soc Rev 38:2520-531View Article
    27.Zhang LL, Zhou R, Zhao XS (2010) J Mater Chem 20:5983-992View Article
    28.Chen Y, Zhang X, Zhang H, Sun X, Zhang D, Ma Y (2012) RSC Adv 2:7747-753View Article
    29.Kim M, Hwang Y, Kim J (2014) Phys Chem Chem Phys 16:351-61View Article
    30.Lu X, Dou H, Gao B, Yuan C, Yang S, Hao L, Shen L, Zhang X (2011) Electrochim Acta 56:5115-121View Article
    31.Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339-339View Article
    32.Chen C, Yang QH, Yang Y, Lv W, Wen Y, Hou PX, Wang M, Cheng HM (2009) Adv Mater 21:3007-011
    33.Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Phys Rep 473:51-7View Article
    34.Shinde DB, Debgupta J, Kushwaha A, Aslam M, Pillai VK (2011) J Am Chem Soc 133:4168-171View Article
    35.Bonhomme F, Lassegues JC, Servant L (2001) J Electrochim Soc 148:E450–E458View Article
    36.Devaraj S, Kuezma M, Ng CT, Balaya P (2013) Electrochim Acta 102:290-98View Article
    37.Duan X, Lian J, Ma J, Kim T, Zheng W (2010) Cryst Growth Des 10:4449-455View Article
    38.Biernacki L, Pokrzywnicki S (1999) J Therm Anal Calorim 55:227-32View Article
    39.Cullity BD, Stock SR (2001) Elements of X-Ray Diffraction, 3rd edn. Prentice-Hall Inc, Englewood Cliffs, p 167
    40.Qu QT, Shi Y, Tian S, Chen YH, Wu YP, Holze R (2009) J Power Sources 194:1222-225View Article
    41.Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M (2001) J Power Sources 101:109-16View Article
  • 作者单位:B. Amutha (1)
    M. Sathish (1)

    1. Functional Materials Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630 006, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Analytical Chemistry
    Industrial Chemistry and Chemical Engineering
    Characterization and Evaluation Materials
    Condensed Matter
    Electronic and Computer Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1433-0768
文摘
A 2?V asymmetric supercapacitor is developed using reduced graphene oxide-carbon nanofiber-MnCO3 nanocomposite (RGO-CNF-MnCO3) as positive electrode and RGO as negative electrode in a neutral 1?M Na2SO4 aqueous electrolyte. The RGO-CNF-MnCO3 composite positive electrode is prepared using hydrothermal method, and the X-ray diffraction (XRD) studies reveal the formation of crystalline rhodochrosite MnCO3 in the as-prepared nanocomposites. The electron microscopic images show the formation of MnCO3 nanoparticles on RGO-CNF surface in the nanocomposites. Fourier transform infrared (FT-IR) and Raman spectroscopic analyses confirm the existence of various functional groups in RGO-CNF-MnCO3 nanocomposite. RGO is prepared using modified Hummers and Offeman’s method. Cyclic voltammetry and galvanostatic charge–discharge experiments of symmetric RGO-CNF-MnCO3 and RGO cells show a poor energy density of 4.8 and 3.6?Wh/kg at 0.1?A/g, respectively. Cyclic voltammetry and galvanostatic charge–discharge experiments of asymmetric RGO//RGO-CNF-MnCO3 cell in aqueous 1?M Na2SO4 solution show the stability of asymmetric cell up to 2?V with a high energy density of 21?Wh/kg. The RGO//RGO-CNF-MnCO3 asymmetric cell shows excellent capacitance retention of 97?% even after 1000?cycles charge–discharge at 1?A/g. In addition, a high energy density of 15?Wh/kg is retained when the power density increases to 1.07?kW/kg for the asymmetric cell. The high energy density and stability of prepared asymmetric RGO//RGO-CNF-MnCO3 cell is promising for electrochemical energy storage in aqueous electrolyte.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700