Extending the zero-derivative principle for slow–fast dynamical systems
详细信息    查看全文
  • 作者:Eric Beno?t ; Morten Br?ns ; Mathieu Desroches…
  • 关键词:34D15 ; 37D10 ; Slow–fast dynamics ; Zero ; derivative principle ; Slow manifolds ; Fenichel theory ; Curvature ; Intrinsic low ; dimensional manifolds ; Ghosts ; Templator
  • 刊名:Zeitschrift f篓鹿r angewandte Mathematik und Physik
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:66
  • 期:5
  • 页码:2255-2270
  • 全文大小:1,184 KB
  • 参考文献:1.Beutel K.M., Peacock-López E.: Complex dynamics in a cross-catalytic self-replication mechanism. J. Chem. Phys. 126(12), 125104 (2007)CrossRef
    2.Borok S., Goldfarb I., Gol’dshtein V.: About non-coincidence of invariant manifolds and intrinsic low dimensional manifolds (ILDM). Commun. Nonlinear Sci. Numer. Simul. 13, 1029-038 (2008)MathSciNet CrossRef MATH
    3.Borok S., Goldfarb I., Gol’dshtein V.: Causes for “ghost-manifolds. Commun. Nonlinear Sci. Numer. Simul. 14, 1791-795 (2009)MathSciNet CrossRef MATH
    4.Br?ns M.: Canard explosion of limit cycles in templator models of self-replication mechanisms. J. Chem. Phys. 134(14), 144105 (2011)CrossRef
    5.Br?ns M., Bar-Eli K.: Asymptotic analysis of canards in the EOE equations and the role of the inflection line. Proc. R. Soc. Lond. Ser A Math. Phys. Eng. Sci. 445(1924), 305-22 (1994)CrossRef
    6.Desroches M., Krupa M., Rodrigues S.: Inflection, canards and excitability threshold in neuronal models. J. Math. Biol. 67(4), 989-017 (2013)MathSciNet CrossRef MATH
    7.Fenichel N.: Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21(3), 193-26 (1971)MathSciNet CrossRef MATH
    8.Fenichel N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31(1), 53-8 (1979)MathSciNet CrossRef MATH
    9.Fraser S.J.: The steady state and equilibrium approximations: A geometrical picture. J. Chem. Phys. 88(8), 4732-738 (1988)CrossRef
    10.Ginoux J.-M.: Differential geometry applied to dynamical systems. World Scientific, Singapore (2009)MATH
    11.Ginoux J.-M., Rossetto B.: Differential geometry and mechanics: applications to chaotic dynamical systems. Int. J. Bifurc. Chaos 16(4), 887-10 (2006)MathSciNet CrossRef MATH
    12.Ginoux J.-M., Rossetto B., Chua L.O.: Slow invariant manifolds as curvature of the flow of dynamical systems. Int. J. Bifurc. Chaos 18(11), 3409-430 (2008)MathSciNet CrossRef MATH
    13.Kaper H.G., Kaper T.J.: Asymptotic analysis of two reduction methods for systems of chemical reactions. Phys. D Nonlinear Phenom. 165(1-2), 66-3 (2002)MathSciNet CrossRef MATH
    14.Lam S.H., Goussis D.A.: The CSP method for simplifying kinetics. Int. J. Chem. Kinet. 26, 461-86 (1994)CrossRef
    15.Maas U., Pope S.B.: Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame 88(3-4), 239-64 (1992)CrossRef
    16.Okuda M.: A new method of nonlinear analysis for shaping and threshold actions. J. Phys. Soc. Jpn. 41(5), 1815-816 (1976)CrossRef
    17.Peacock-Lopez E., Radov D.B., Flesner C.S.: Mixed-mode oscillations in a self-replicating dimerization mechanism. Biophys. Chem. 65(2-3), 171-78 (1997)CrossRef
    18.Peng B., Gaspar V., Showalter K.: False bifurcations in chemical systems: canards. Philos. Trans. R. Soc. Lond. Ser A Phys. Eng. Sci. 337(1646), 275-89 (1991)CrossRef MATH
    19.Roussel M.R., Fraser S.J.: Geometry of the steady-state approximation: Perturbation and accelerated convergence methods. J. Chem. Phys. 93(2), 1072-081 (1990)CrossRef
    20.Tikhonov A.N.: Systems of differential equations containing small parameters in the derivatives. Mat. Sb. 73(3), 575-86 (1952)MathSciNet
    21.Tsai L.L., Hutchison G.R., Peacock-López E.: Turing patterns in a self-replicating mechanism with a self-complementary template. J. Chem. Phys. 113(5), 2003-006 (2000)CrossRef
    22.van der Pol B.: On relaxation–oscillations. Philos. Mag. 2(7), 978-92 (1927)
    23.Zagaris A., Gear C.W., Kaper T.J., Kevrekidis Y.G.: Analysis of the accuracy and convergence of equation-free projection to a slow manifold. ESAIM Math. Model. Numer. Anal. 43(4), 757-84 (2009)MathSciNet CrossRef MATH
    24.Zagaris A., Kaper H.G., Kaper T.J.: Analysis of the computational singular perturbation reduction method for chemical kinetics. J. Nonlinear Sci. 14, 59-1 (2004)MathSciNet CrossRef MATH
  • 作者单位:Eric Beno?t (1)
    Morten Br?ns (2)
    Mathieu Desroches (3)
    Martin Krupa (4)

    1. Laboratoire Mathématiques Images et Applications, Université de la Rochelle, EA3165 Avenue Michel Crépeau, 17042, La Rochelle Cedex, France
    2. Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
    3. Project-Team MYCENAE, Inria Paris-Rocquencourt Research Centre, Domaine de Voluceau, BP 105, 78153, Le Chesnay Cedex, France
    4. Project-Team NEUROMATHCOMP, Inria Sophia Antipolis Méditerranée, 2004 Route des Lucioles, BP 93, 06902, Valbonne, France
  • 刊物主题:Theoretical and Applied Mechanics; Mathematical Methods in Physics;
  • 出版者:Springer Basel
  • ISSN:1420-9039
文摘
Slow–fast systems often possess slow manifolds, that is invariant or locally invariant sub-manifolds on which the dynamics evolves on the slow time scale. For systems with explicit timescale separation, the existence of slow manifolds is due to Fenichel theory, and asymptotic expansions of such manifolds are easily obtained. In this paper, we discuss methods of approximating slow manifolds using the so-called zero-derivative principle. We demonstrate several test functions that work for systems with explicit time scale separation including ones that can be generalized to systems without explicit timescale separation. We also discuss the possible spurious solutions, known as ghosts, as well as treat the Templator system as an example. Mathematics Subject Classification 34D15 37D10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700