用户名: 密码: 验证码:
DEM simulations of the small strain stiffness of granular soils: effect of stress ratio
详细信息    查看全文
  • 作者:Xiaoqiang Gu (1) (2)
    Jun Yang (3)
    Maosong Huang (1) (2)
  • 关键词:Discrete element ; Small strain stiffness ; Young’s modulus ; Shear modulus ; Stress ratio ; Anisotropy
  • 刊名:Granular Matter
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:15
  • 期:3
  • 页码:287-298
  • 全文大小:935KB
  • 参考文献:1. Richart, F.E., Hall, J.R., Woods, R.D.: Vibrations of Soils and Foundations. Prentice-Hall, Englewood Cliffs (1970)
    2. Andrus, R.D., Stokoe, K.H.I.I.: Liquefaction resistance of soils from shear-wave velocity. J. Geotech. Geoenviron. Eng. 126(1), 1015-025 (2000) CrossRef
    3. Yang, J., Yan, X.R.: Site response to multi-directional earthquake loading: a practical procedure. Soil Dyn. Earthq. Eng. 29(4), 710-21 (2000)
    4. Hardin, B.O., Richart, F.E.: Elastic wave velocities in granular soils. J. Soil Mech. Found. Div. 89(SM1), 39-6 (1963)
    5. Hardin, B.O., Black, W.L.: Sand stiffness under various triaxial stresses. J. Soil Mech. Found. Div. 92(2), 27-2 (1966)
    6. Tatsuoka, F., Iwasaki, T., Fukushima, S., Sudo, H.: Stress conditions and stress histories affecting shear modulus and damping of sand under cyclic loading. Soils Found. 19(2), 29-3 (1979) CrossRef
    7. Roesler, S.K.: Anisotropic shear modulus due to stress anisotropy. J. Geotech. Eng. Div. 105(7), 871-80 (1979)
    8. Knox, D.P., Stokoe, K.H.II., Kopperman, S.E.: Effect of state of stress on velocity of low-amplitude shear wave propagation along principle stress directions in dry sand. Geotechnical Engineering report GR-82-23, University of Texas at Austin, Texas (1982)
    9. Yu, P.-J., Richart Jr, F.E.: Stress ratio effects on the shear modulus of dry sands. J. Geotech. Eng. Div. 110(3), 331-45 (1984) CrossRef
    10. Chen, Y.-C., Ishibashi, I., Jenkins, J.T.: Dynamic shear modulus and fabric: part I, depositional and induced anisotropy. Géotechnique 38(1), 25-2 (1988) CrossRef
    11. Ezaoui, A., Di Benedetto, H.: Experimental measurements of the global anisotropic elastic behavior of dry Hostun sand during triaxial tests, and the effect of sample preparation. Géotechnique 59(7), 621-35 (2009) CrossRef
    12. Bellotti, R., Jamiolkowski, M., Lo Presti, D.C.F., O’Neill, D.A.: Anisotropy of small strain stiffness in Ticino sand. Géotechnique 46(1), 115-31 (1996) CrossRef
    13. Hoque, E., Tatsuoka, F.: Anisotropy in elastic deformation of granular materials. Soils Found. 38(11), 163-79 (1998)
    14. Kuwano, R., Jardine, R.J.: On the applicability of cross-anisotropic elasticity to granular materials at very small strains. Géotechnique 52(10), 727-49 (2002) CrossRef
    15. Hoque, E., Tatsuoka, F.: Effects of stress ratio on small-strain stiffness during triaxial shearing. Géotechnique 54(7), 429-39 (2004)
    16. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47-5 (1979)
    17. Cundall, P.A., Jenkins, J.T., Ishibashi, I.: Evolution of elastic moduli in a deforming granular assembly. In: Biarez, J., Gourves, R. (eds.) Powders and Grains, pp. 319-22. Balkema, Rotterdam (1989)
    18. Dobry, R., Ng, T.T.: Discrete modeling of stress-strain behavior of granular media at small and large strains. Eng. Comput. 9, 129-43 (1992) CrossRef
    19. Ng, T.T., Petrakis, E.: Small-strain response of random array of spheres using discrete element method. J. Eng. Mech. 122(10), 239-44 (1996) CrossRef
    20. Magnanimo, V., La Ragione, L., Jenkins, J.T., Wang, P., Makse, H.A.: Characterizing the shear and bulk moduli of an idealized granular material. Europhys. Lett. 81(3), 34006 (2008)
    21. Wang, Y.H., Mok, C.M.B.: Mechanisms of small-strain shear-modulus anisotropy in soils. J. Geotech. Geoenviron. Eng. 134(10), 1516-530 (2008) CrossRef
    22. Itasca: Particle flow code ( $\text{ PFC }^{\rm 2D})$ manual, Itasca Consulting Group, Inc., Minn. (2003)
    23. O’Sullivan, C., Bray, J.D., Riemer, M.F.: Influence of particle shape and surface friction variability on response of rod-shaped particulate media. J. Eng. Mech. 128(11), 1182-192 (2002) CrossRef
    24. Gu, X.Q.: Dynamic properties of granular materials at the macro and micro scales. PhD thesis, The University of Hong Kong, Hong Kong (2012)
    25. Kokusho, T.: Cyclic triaxial test of dynamic soil properties for wide strain range. Soils Found. 20(2), 45-0 (1980) CrossRef
    26. Nakagawa, K., Soga, K., Mitchell, J.K.: Observation of Biot compressional wave of the second kind in granular soils. Géotechnique 47(1), 133-47 (1997) CrossRef
    27. Wichtmann, T., Triantafyllidis, T.: On the influence of the grain size distribution curve on P-wave velocity, constrained elastic modulus $M_{\rm max}$ and Poisson’s ratio of quartz sands. Soil Dyn. Earthq. Eng. 30, 757-66 (2010) CrossRef
    28. Kumar, J., Madhusudhan, B.N.: Effect of relative density and confining pressure on Poisson ratio from bender-extender element tests. Géotechnique 60(7), 561-67 (2010) CrossRef
    29. Thornton, C.: Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50(1), 43-3 (2000) CrossRef
    30. Jiang, G.-L., Tatsuoka, F., Flora, A., Koseki, J.: Inherent and stress-state-induced anisotropy in very small strain stiffness of a sandy gravel. Géotechnique 47(3), 509-21 (1997) CrossRef
    31. Ishibashi, I., Caper, O.F.: Anisotropy and its relation to liquefaction resistance of granular material. Soils Found. 43(5), 149-59 (2003) CrossRef
    32. Rothenburg, L., Bathurst, R.J.: Analytical study of induced anisotropy in idealized granular materials. Géotechnique 39(4), 601-14 (1989) CrossRef
    33. Lu, Y., Frost, J.D.: Three-dimensional DEM modeling of triaxial compression of sands. In: Meier, R., Abbo, A., Wang, L.B. (eds.) GeoShanghai 2010 International Conference, ASCE, pp. 220-26 (2010)
    34. Yan, W.M.: Particle elongation and deposition effect to macroscopic and microscopic responses of numerical direct shear tests. Geotech. Test. J. 34(3), 238-49 (2011)
    35. Barreto, D., O’Sullivan, C.: The influence of interparticle friction and the intermediate stress ratio on soil response under generalized stress conditions. Granul. Matter 14(4), 505-21 (2010) CrossRef
    36. Yimsiri, S., Soga, K.: DEM analysis of soil fabric effects on behavior of sand. Géotechnique 60(6), 483-95 (2010)
  • 作者单位:Xiaoqiang Gu (1) (2)
    Jun Yang (3)
    Maosong Huang (1) (2)

    1. Department of Geotechnical Engineering, Tongji University, Shanghai, 200092, China
    2. Key Laboratory of Geotechnical and Underground Engineering of the Ministry of Education, Tongji University, Shanghai, 200092, China
    3. Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
  • ISSN:1434-7636
文摘
DEM (discrete element method) simulations are carried out to evaluate the small strain stiffness (i.e. Young’s modulus and shear modulus) of a granular random packing with focus on the effect of stress ratio (SR). The results show that the Young’s modulus in a given direction generally depends on the stress component in that direction. The Young’s modulus normalized by the related stress component remains nearly constant when SR is less than a threshold value $SR_\mathrm{th}$ . When SR is larger than $SR_\mathrm{th}$ , the normalized Young’s modulus decreases, particularly in the minor principle stress direction. Moreover, the Young’s modulus during unloading is always smaller than the one during loading at the same stress state, which indicates that the microstructure of the specimen has been modified by the historical shearing process. The shear modulus mainly depends on the mean effective stress and shows similar evolution trend as the Young’s modulus. This study finds that the macroscopic stiffness of the specimen is closely related to the evolutions of particle contact number and contact force during shearing. When SR is less than $SR_\mathrm{th}$ , the specimen only adjusts the distribution of contact forces to resist the external load, without any apparent change of contact number. When SR is larger than $SR_\mathrm{th}$ , however, the specimen has to adjust both contact number and contact forces to resist the external load. The study also illustrates that there is a good relationship between the macroscopic stiffness anisotropy and fabric anisotropy, and therefore the stiffness anisotropy may be used as an indicator of fabric anisotropy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700