Structural stability of photodegradable poly(l-lactic acid)/PE/TiO2 nanocomposites through TiO2 nanospheres and TiO 详细信息    查看全文
  • 作者:Kacris Idianês Matos da Silva (1)
    Jesum Alves Fernandes (1)
    Emerson Cristofer Kohlrausch (1)
    Jairton Dupont (1)
    Marcos José Leite Santos (1)
    Marcelo Priebe Gil (1)
  • 关键词:Photodegradation ; Polylactic acid ; Polyethylene ; Nanocomposite ; TiO2
  • 刊名:Polymer Bulletin
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:71
  • 期:5
  • 页码:1205-1217
  • 全文大小:756 KB
  • 参考文献:1. Grigoriadou I, Paraskevopoulos KM, Chrissafis K, Pavlidou E, Stamkopoulos T-G, Bikiaris D (2011) Effect of different nanoparticles on HDPE UV stability. Polym Degrad Stab 96:151-63 CrossRef
    2. Kim J, Kim JH, Shin TK, Choi HJ, John MS (2001) Miscibility and rheological characteristics of biodegradable aliphatic polyester and linear low density polyethylene blends. Eur Polym J37:2131-139 CrossRef
    3. Rajakumar K, Sarasvathy V, Chelvan AT, Chitra R, Vijayakumar CT (2011) Effect of iron carboxylates on the photodegradability of polypropylene. II. Artificial weathering studies. J Appl Polym Sci 123(5):2968-976 CrossRef
    4. Omar MF, Akil HM, Ahmad ZA (2012) Effect of molecular structures on dynamic compression properties of polyethylene. Mater Sci Eng A 538:125-34 CrossRef
    5. Chum PS, Swogger KW (2008) Olefin polymer technologies—history and recent progress at The Dow Chemical Company. Prog Polym Sci 33:797-19 CrossRef
    6. Zan L, Fa W, Wang S (2006) Novel photodegradable low-density polyethylene-TiO2 nanocomposite film. Environ Sci Technol 40:1681-685 CrossRef
    7. Rezgui F, G’Sell C, Dahoun A, Hiver JM, Sadoun T (2011) Plastic deformation of low-density polyethylene reinforced with biodegradable polylactide, part 1: microstructural analysis and tensile behavior at constant true strain-rate. Polym Eng Sci 51(1):117-25 CrossRef
    8. Rodriguez-Gonzalez FJ, Ramsay BA, Favis BD (2003) High performance LDPE/thermoplastic starch blends: a sustainable alternative to pure polyethylene. Polymer 44:1517-526 CrossRef
    9. Siracusa V, Rocculi P, Romani S, Rosa MD (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634-43 CrossRef
    10. Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM (2010) Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stab 95:2126-146 CrossRef
    11. Balakrishnan H, Hassan A, Wahit MU, Yussuf AA, Razak SBA (2010) Novel toughened polylactic acid nanocomposite: mechanical, thermal and morphological properties. Mater Des 31:3289-298 CrossRef
    12. Garlotta D (2002) A literature review of poly (lactic acid). J Polym Environ 9(2):63-3 CrossRef
    13. Gupta P, Kumar V (2007) New emerging trends in synthetic biodegradable polymers—polylactide: a critique. Eur Polym J 43(10):4053-074 CrossRef
    14. Baiardo M, Frisoni G, Scandola M, Rimelen M, Lips D, Ruffieux K, Wintermantel E (2003) Thermal and mechanical properties of plasticized poly(l -lactic acid). J Appl Polym Sci 90:1731-738 CrossRef
    15. Kulinski Z, Piorkowska E (2005) Crystallization, structure and properties of plasticized poly(l -lactide). Polymer 46:10290-0300 CrossRef
    16. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835-64 CrossRef
    17. Martino P, Jiménez A, Ruseckaite RA, Avérous L (2011) Structure and properties of clay nano-biocomposites based on poly (lactic acid) plasticized with polyadipates. Polym Adv Technol 22:2206-213 CrossRef
    18. Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576-02 CrossRef
    19. Huneault MA, Li H (2007) Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer 48:270-80 CrossRef
    20. Hasook A, Tanoue S, Iemoto Y (2006) Characterization and mechanical properties of poly (lactic acid)/poly(ε-caprolactone)/organoclay nanocomposites prepared by melt compounding. Polym Eng Sci 46(8):1001-007 CrossRef
    21. Hamad K, Kaseem M, Deri F (2011) Rheological and mechanical characterization of poly (lactic acid)/polypropylene polymer blends. J Polym Res 18:1799-806 CrossRef
    22. Hamad K, Kaseem M, Deri F (2010) Rheological and mechanical properties of poly(lactic acid)/polystyrene polymer blends. Polym Bull 65:509-19 CrossRef
    23. Choudhary P, Mohanty S, Nayak SK, Unnikrishnan L (2011) Poly (l -lactide)/polypropylene blends: evaluation of mechanical, thermal, and morphological characteristics. J Appl Polym Sci 121:3223-237 CrossRef
    24. Kaminsky W (2008) Trends in polyolefin chemistry. Macromol Chem Phys 209(5):459-66 CrossRef
    25. Muelhaupt R (2003) Catalytic polymerization and post polymerization catalysis fifty years after the discovery of Ziegler’s catalysts. Macromol Chem Phys 204(2):289-27 CrossRef
    26. Zhao X, Li Z, Chen Y, Shi L, Zhu Y (2007) Solid-phase photocatalytic degradation of polyethylene plastic under UV and solar light irradiation. J Mol Catal A Chem 268:101-06 CrossRef
    27. Ikada E (1997) Photo- and biodegradable polyesters. Photodegradation behaviors of aliphatic polyesters. J Photopolym Sci Technol 10(2):265-70 CrossRef
    28. Hoffmann MR, Martins ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69-6 CrossRef
    29. Nakayama N, Hayashi T (2007) Preparation and characterization of poly (l -lactic acid)/TiO2 nanoparticle nanocomposite films with high transparency and efficient photodegradability. Polym Degrad Stab 92:1255-264 CrossRef
    30. Richard C, Boule P (1991) Oxidizing species involved in photocatalytic transformations on zinc oxide. J Photochem Photobiol A Chem 60(2):235-43 CrossRef
    31. Mucha M, Bialas S, Kaczmarek H (2014) Effect of nanosilver on photodegradation of Poly(lactic acid). J Appl Polym Sci 131:40144 CrossRef
    32. Zhao X, Li Z, Chen Y, Shi L, Zhu Y (2007) Solid-phase photocatalytic degradation of polyethylene plastic under UV and solar light irradiation. J Mol Catal A Chem 268:101-06 CrossRef
    33. Ikada E (1993) Role of the molecular structure in the photodecomposition of polymers. J Photopolym Sci Technol 6(1):115-22 CrossRef
    34. Torres A, Li SM, Roussos S, Vert M (1996) Screening of microorganisms for biodegradation of Poly(lactic acid) and lactic acid-containing polymers. Appl Environ Microbiol 62:2393-397
    35. Copinet A, Bertrand C, Govidin S, Coma V, Couturier Y (2004) Effects of ultraviolet light (315?nm) temperature and relative humidity on the degradation of polylactic acid plastic films. Chemosphere 55:763-73 CrossRef
    36. Buzarovska A, Grozdanov A (2012) Biodegradable poly(l -lactic acid)/TiO2 nanocomposites: thermal properties and degradation. J Appl Polym Sci 123(4):2187-193 CrossRef
    37. Ha CS, Cho W (2002) Miscibility, properties, and biodegradability of microbial polyester containing blends. Prog Polym Sci 27(4):759-09 CrossRef
    38. Qian J, Zhu L, Zhang J, Whitehouse R (2007) Comparison of different nucleating agents on crystallization of poly (3-hydroxybutyrate-co-hydroxyvalerates). J Polym Sci B Polym Phys 45:1564-577 CrossRef
    39. Singh A (1999) Irradiation of polyethylene: some aspects of crosslinking and oxidative degradation. Radiat Phys Chem 56(4):375-80 CrossRef
    40. Furukawa T, Sato H, Murakami R, Zhang J, Noda I, Ochiai S, Ozaki Y (2007) Comparison of miscibility and structure of poly(3-hydroxybutyrate- / co-3-hydroxyhexanoate)/poly(l -lactic acid) blends with those of poly(3-hydroxybutyrate)/poly(l -lactic acid) blends studied by wide angle X-ray diffraction, differential scanning calorimetry, and FTIR microspectroscopy. Polymer 48(6):1749-755 CrossRef
    41. Snyder RG (1980) Spectroscopic methods. In: Marton L, Marton C (eds) Methods of experimental physics, vol 16: Part A. Academic, New York, pp 188-00
    42. Snyder RG (1961) Vibrational spectra of crystalline / n-paraffins: II. Intermolecular effects. J Mol Spectrosc 7:116-44 CrossRef
    43. Snyder RG (1967) Vibrational study of the chain conformation of the liquid / n-paraffins and molten polyethylene. J Chem Phys 47(4):1316-360 CrossRef
  • 作者单位:Kacris Idianês Matos da Silva (1)
    Jesum Alves Fernandes (1)
    Emerson Cristofer Kohlrausch (1)
    Jairton Dupont (1)
    Marcos José Leite Santos (1)
    Marcelo Priebe Gil (1)

    1. Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil
  • ISSN:1436-2449
文摘
Photodegradation of PLA/PE, PLA/PE/TiO2 nanospheres and PLA/PE/TiO2 nanotubes was obtained under simulated sunlight. The nanocomposites were analyzed by infrared spectroscopy, scanning electron microscopy and tensile-deformation measurements. TiO2 nanospheres and TiO2 nanotubes were found to present different effects on the crystallinity of PLA and a straight correlation between structural organization and photostability was observed. According to the results, TiO2 promotes the degradation of PLA and PE, affecting the organizational level of the polymers. By adding TiO2 nanoparticles to the PLA/PE films, vibration modes characteristic of degradation products were promptly observed and the lifetime of the polymer decreased when compared to the PLA/PE without TiO2 nanoparticles. Mechanical measurements showed an improvement of the mechanical properties when adding the TiO2 nanoparticles.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700