A Comparative Analysis of the Relative Efficacy of Vector-Control Strategies Against Dengue Fever
详细信息    查看全文
  • 作者:Marcos Amaku (1)
    Francisco Antonio Bezerra Coutinho (2)
    Silvia Martorano Raimundo (2)
    Luis Fernandez Lopez (2) (3)
    Marcelo Nascimento Burattini (2)
    Eduardo Massad (2) (4)
  • 关键词:Dengue ; Basic reproduction number ; Force of infection ; Sensitivity analysis ; Vector control
  • 刊名:Bulletin of Mathematical Biology
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:76
  • 期:3
  • 页码:697-717
  • 全文大小:635 KB
  • 参考文献:1. Adams, B., & Boots, M. (2010). How important is vertical transmission in mosquitoes for the persistence of dengue? Insights from a mathematical model. / Epidemics, / 2, 1-0. CrossRef
    2. Aguiar, M., Kooi, B. W., Rocha, F., Ghaffari, P., & Stollenwerk, N. (2013). How much complexity is needed to describe the fluctuations observed in dengue hemorrhagic fever incidence data? / Ecol. Complex., / 16, 31-0. CrossRef
    3. Amaku, M., Azevedo, R. S., Castro, R. M., Massad, E., & Coutinho, F. A. B. (2009). Relationship among epidemiological parameters in a non-immunized Brazilian community. / Mem. Inst. Oswaldo Cruz, / 104, 897-00. CrossRef
    4. Amaku, M., Burattini, M. N., Coutinho, F. A. B., & Massad, E. (2013a). A comment on the estimation of the Basic Reproduction Number for vector-borne infections. / Phil. Trans. R. Soc. A, eLetter. http://rsta.royalsocietypublishing.org/content/368/1933/5679.abstract/reply. Accessed 17 Aug 2013.
    5. Amaku, M., Burattini, M. N., Coutinho, F. A. B., Lopez, L. F., & Massad, E. (2013b). Maximum equilibrium prevalence of mosquito-borne microparasite infections in humans. / Comput. Math. Methods Med., / 2013, 659038. doi:10.1155/2013/659038 . CrossRef
    6. Anguelov, R., Dumont, Y., & Lubuma, J. M.-S. (2012). Mathematical modeling of sterile insect technology for control of anopheles mosquito. / Comput. Math. Appl., / 64(3), 374-89. CrossRef
    7. Baca?r, N., & Guernaoui, S. (2006). The epidemic threshold of vector-borne diseases with seasonality: the case of cutaneous leishmaniasis in Chichaoua, Morocco. / J. Math. Biol., / 53, 421-36. CrossRef
    8. Beatty, M. E., Letson, G. W., & Margolis, H. S. (2008). Estimating the global burden of dengue. Abstract book: dengue 2008. In / Proceedings of the 2nd international conference on dengue and dengue haemorrhagic fever, Phuket, Thailand.
    9. Beatty, M. E., Beutels, P., Meltzer, M. I., Shepard, D. S., Hombach, J., et al. (2011). Health economics of dengue: a systematic literature review and expert panel’s assessment. / Am. J. Trop. Med. Hyg., / 84, 473-88. CrossRef
    10. Brownstein, J. S., Heth, E., & O’Neill, L. (2003). The potential of virulent Wolbachia to modulate disease transmission by insects. / J. Invertebr. Pathol., / 84, 24-9. CrossRef
    11. Burattini, M. N., Chen, M., Chow, A., Coutinho, F. A. B., Goh, K. T., et al. (2008). Modelling the control strategies against dengue in Singapore. / Epidemiol. Infect., / 136, 309-19. CrossRef
    12. Chitnis, N., Hyman, J. M., & Cushing, J. M. (2008). Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. / Bull. Math. Biol., / 70, 1272-296. CrossRef
    13. Cousins, R. D., & James, F. (2006). Comment on “The distribution of composite measurements: how to be certain of the uncertainties in what we measure,-by M.?P. Silverman, W. Strange, and T. C. Lipscombe [Am. J. Phys. 72(8), 1068-081 (2004)]. / Am. J. Phys., / 72(8), 1068-081.
    14. Coutinho, F. A. B., Lopez, L. F., & Massad, E. (2004). Comment on “The distribution of composite measurements: how to be certain of the uncertainties in what we measure,-by M.?P. Silverman, W. Strange, and T.?C. Lipscombe [Am. J. Phys. 72(8), 1068-081 (2004)] / Am. J. Phys., / 72(8), 1068-081. CrossRef
    15. Coutinho, F. A. B., Burattini, M. N., Lopez, L. F., & Massad, E. (2005). An approximate threshold condition for non-autonomous system: an application to a vector-borne infection. / Math. Comput. Simul., / 70, 149-58. CrossRef
    16. Coutinho, F. A. B., Burattini, M. N., Lopez, L. F., & Massad, E. (2006). Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue. / Bull. Math. Biol., / 68, 2263-282. CrossRef
    17. Dumont, Y., & Chiroleu, F. (2010). Vector control for the Chikungunya disease. / Math. Biosci. Eng., / 7(2), 313-45. CrossRef
    18. Ellis, A. M., Garcia, A. J., Focks, D. A., Morrison, A. C., & Scott, T. W. (2011). Parameterization and sensitivity analysis of a complex simulation model for mosquito population dynamics, dengue transmission and their control. / Am. J. Trop. Med. Hyg., / 82, 257-64. CrossRef
    19. Erickson, R. A., Presley, S. M., Allen, L. J. S., Long, K. R., & Cox, S. B. (2010). A dengue model with a dynamic Aedes albopictus vector population. / Ecol. Model., / 221, 2899-908. CrossRef
    20. Fegan, G., Noor, A. M., Akhwale, W. S., Cousens, S., & Snow, R. W. (2007). Effect of expanded insecticide-treated bednet coverage on child survival in rural Kenya: a longitudinal study. / Lancet, / 370, 1035-039. CrossRef
    21. Forattini, O. P. (1996). / Medical culicidology. S?o Paulo: EDUSP.
    22. Garba, S. M., Gumel, A. B., & Abu Bakar, M. R. (2008). Backward bifurcations in dengue transmission dynamics. / Math. Biosci., / 215, 11-5. CrossRef
    23. Gubler, D. J. (2002). The global emergence/resurgence of arboviral diseases as public health problems. / Arch. Med. Res., / 33, 330-42. CrossRef
    24. Gubler, D. J. (2011). Dengue, urbanization and globalization: the unholy trinity of the 21st century. / Trop. Med. Health, / 39 (4 Suppl), 3-1. CrossRef
    25. Guy, B., Almond, J., & Lang, J. (2011). Dengue vaccine prospects. / Lancet, / 377, 381-82. CrossRef
    26. Halstead, S. B. (1990). Dengue. In K.?S. Warren & A.?A.?F. Mahmoud (Eds.), / Tropical and geographical medicine (pp. 675-84). New York: McGraw-Hill.
    27. Index Mundi (2011). http://www.indexmundi.com/map/?v=30&l=pt. Accessed 18 Aug 2011.
    28. Integrated Vector Management (2012). http://www.ivmproject.net/about/index.cfm?fuseaction=static&label=dengue. Accessed 1 Apr 2012.
    29. Khasnis, A. A., & Nettlelman, M. D. (2005). Global warming and infectious disease. / Arch. Med. Res., / 36, 689-96. CrossRef
    30. Kooi, B. W., Aguiar, M., & Stollenwerk, N. (2013). Bifurcation analysis of a family of multistrain epidemiology models. / J. Comput. Appl. Math., / 252, 148-58. CrossRef
    31. Lambrechts, L., Scott, T. W., & Gubler, D. J. (2010). Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. / PLoS Negl. Trop. Dis., / 4, e646. CrossRef
    32. Lopez, L. F., Coutinho, F. A. B., Burattini, M. N., & Massad, E. (2002). Threshold conditions for infection persistence in complex host-vectors interactions. / C. R. Biol., / 325, 1073-084. CrossRef
    33. Luz, P. M., Vanni, T., Medlock, J., Paltiel, A. D., & Galvani, A. P. (2011). Dengue vector control strategies in an urban setting: an economic modelling assessment. / Lancet, / 377, 1673-680. CrossRef
    34. Macdonald, G. (1952). The analysis of equilibrium in malaria. / Trop. Dis. Bull., / 49, 813-28.
    35. Massad, E., & Coutinho, F. A. B. (2011). The cost of dengue control. / Lancet, / 377, 1630-631. CrossRef
    36. Massad, E., Behrens, R. H., Burattini, M. N., & Coutinho, F. A. B. (2009). Modeling the risk of malaria for travelers to areas with stable malaria transmission. / Malar. J., / 8, 296. CrossRef
    37. Massad, E., Coutinho, F. A. B., Lopez, L. F., & da Silva, D. R. (2011). Modeling the impact of global warming on vector-borne infections. / Phys. Life Rev., / 8, 169-99.
    38. Ocampo, C. B., & Wesson, D. M. (2004). Population dynamics of Aedes aegypti from a dengue hyperendemic urban setting in Colombia. / Am. J. Trop. Med. Hyg., / 7(1), 506-13.
    39. Pinho, S. T. R., Ferreira, C. P., Esteva, L., Barreto, F. R., Morato?e?Silva, V. C., & Teixeira, M. G. L. (2010). Modelling the dynamics of dengue real epidemics. / Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci., / 368, 5679-693. CrossRef
    40. Reiter, P., & Gubler, D. J. (2001). Surveillance and control of urban dengue vectors. In D. J. Gubler & G. Kuno (Eds.), / Dengue and dengue hemorrhagic fever (pp. 425-62). Wallingford: CABI Publishing.
    41. Rodrigues, H. S., Monteiro, M. T., & Torres, D. F. M. (2012). Dengue in Cape Verde: vector control and vaccination. arXiv:1204.0544v1.
    42. Ross, R. (1911). / The prevention of malaria (2nd ed.). London: Murray. With addendum on the theory of happenings.
    43. Silverman, M. P., Strange, W., & Lipscombe, T. C. (2004). The distribution of composite measurements: how to be certain of the uncertainties in what we measure. / Am. J. Phys., / 72, 1068-081. CrossRef
    44. Suaya, J. A., Shepard, D. S., & Siqueira, J. B. (2009). Cost of dengue cases in eight countries in the Americas and Asia: a prospective study. / Am. J. Trop. Med. Hyg., / 80, 846-55.
    45. UNWTO World Tourism Organization (2011). Tourism highlights. www.world-tourism.org/facts/menu.html. Accessed 11 Mar 2011.
    46. Wahl, L. M., & Nowak, M. A. (2000). Adherence and drug resistance: predictions for therapy outcome. / Proc. - Royal Soc., Biol. Sci., / 267, 835-43. CrossRef
    47. Wang, W., & Zhao, X.-Q. (2008). Threshold dynamics for compartmental epidemic models in periodic environments. / J. Dyn. Differ. Equ., / 20, 699-17. CrossRef
    48. WHO (2009). Dengue and dengue haemorrhagic fever. Fact sheet No.?117. http://who.int/mediacentre/factsheets/fs117/en/print.html. Accessed 11 Mar 2011.
    49. WHO (2012). Dengue and severe dengue. Fact sheet No. 117. http://www.who.int/mediacentre/factsheets/fs117/en/. Accessed 10 Apr 2012.
    50. Wilder-Smith, A., Ooi, E. E., Vasudevan, S. G., & Gubler, D. J. (2010). Update on dengue: epidemiology, virus evolution, antiviral drugs, and vaccine development. / Curr. Infect. Dis. Rep., / 12, 157-64. CrossRef
    51. Wilder-Smith, A., Renhorn, K. E., Tissera, H., Abu Bakar, S., Alphey, L., et al. (2012). DengueTools: innovative tools and strategies for the surveillance and control of dengue. / Glob. Health Action, / 5, 17273.
    52. Yasuno, M., & Tonn, R. J. (1970). A study of biting habits of Aedes aegypti in Bangkok, Thailand. / Bull. World Health Organ., / 43, 319-25.
  • 作者单位:Marcos Amaku (1)
    Francisco Antonio Bezerra Coutinho (2)
    Silvia Martorano Raimundo (2)
    Luis Fernandez Lopez (2) (3)
    Marcelo Nascimento Burattini (2)
    Eduardo Massad (2) (4)

    1. School of Veterinary Medicine, University of S?o Paulo, Av. Prof. Orlando Marques de Paiva, 87, Cidade Universitária, S?o Paulo, SP, 05508-270, Brazil
    2. LIM 01-HCFMUSP, School of Medicine, University of Sao Paulo, Av. Dr. Arnaldo 455, S?o Paulo, SP, 01246-903, Brazil
    3. CIARA, Florida International University, Miami, USA
    4. London School of Hygiene and Tropical Medicine, London University, Keppel Street, London, W1C 7HT, UK
  • ISSN:1522-9602
文摘
Dengue is considered one of the most important vector-borne infection, affecting almost half of the world population with 50 to 100 million cases every year. In this paper, we present one of the simplest models that can encapsulate all the important variables related to vector control of dengue fever. The model considers the human population, the adult mosquito population and the population of immature stages, which includes eggs, larvae and pupae. The model also considers the vertical transmission of dengue in the mosquitoes and the seasonal variation in the mosquito population. From this basic model describing the dynamics of dengue infection, we deduce thresholds for avoiding the introduction of the disease and for the elimination of the disease. In particular, we deduce a Basic Reproduction Number for dengue that includes parameters related to the immature stages of the mosquito. By neglecting seasonal variation, we calculate the equilibrium values of the model’s variables. We also present a sensitivity analysis of the impact of four vector-control strategies on the Basic Reproduction Number, on the Force of Infection and on the human prevalence of dengue. Each of the strategies was studied separately from the others. The analysis presented allows us to conclude that of the available vector control strategies, adulticide application is the most effective, followed by the reduction of the exposure to mosquito bites, locating and destroying breeding places and, finally, larvicides. Current vector-control methods are concentrated on mechanical destruction of mosquitoes-breeding places. Our results suggest that reducing the contact between vector and hosts (biting rates) is as efficient as the logistically difficult but very efficient adult mosquito’s control.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700