Effect of the feeding system on the fatty acid composition, expression of the Δ9-desaturase, Peroxisome Proliferator-Activated Receptor Alpha, Gamma, and Sterol Regulatory Element Binding Protein 1 genes in the semitendino
详细信息    查看全文
  • 作者:Elda Dervishi (1)
    Carmen Serrano (2)
    Margalida Joy (1)
    Malena Serrano (3)
    Clementina Rodellar (2)
    Jorge H Calvo (1) (4)
  • 刊名:BMC Veterinary Research
  • 出版年:2010
  • 出版时间:December 2010
  • 年:2010
  • 卷:6
  • 期:1
  • 全文大小:426KB
  • 参考文献:1. Park Y, Albright K, Liu W, Storkson J, Cook M, Pariza M: Effect of conjugated linoleic acid on body composition in mice. / Lipids 1997, 32:853-58. CrossRef
    2. West DB, Delany JP, Camet PM, Alicia FB, Truet A, Scimeca DJ: Effects of conjugated linoleic acid on body fat and energy metabolism in the mouse. / Am J Physiol Regul Integr Comp Physiol 1998, 275:667-72.
    3. Pariza MW, Park Y, Cook ME: Conjugated linoleic acid and the control of cancer and obesity. / Toxicol Sci 1999, 52:107-10.
    4. Kritchevsky D, Tepper SHA, Wright S, Tso P, Czarnecki SK: Influence of conjugated linoleic acid (CLA) on establishment and progression of atherosclerosis in rabbits. / J Am Coll Nutr 2000, 19:472-77.
    5. Ip MM, Masso-Welch PA, Ip C: Prevention of mammary cancer with conjugated linoleic acid: role of the stroma and the epithelium. / J Mamm Gland Biol Neopl 2003, 8:103-18. CrossRef
    6. Lock AL, Corl BA, Barbano DM, Bauman DE, Ip C: The Anticarcinogenic effect of trans -11 18:1 is dependent on its conversion to cis -9, trans -11 CLA by delta 9-desaturase in rats. / J Nutr 2004, 134:2698-704.
    7. Park Y, Pariza MW: Mechanisms of body fat modulation by conjugated linoleico acid (CLA). / Food Res Int 2007, 40:311-23. CrossRef
    8. Kelley NS, Hubbard NE, Erickson KL: Conjugated Linoleic Acid Isomers and Cancer. / J Nutr 2007, 137:2599-607.
    9. Roche HM, Noone E, Nugent A, Gibney MJ: Conjugated linoleic acid: a novel therapeutic nutrient? / Nutr Res Rev 2001, 14:173-87. CrossRef
    10. Kepler CR, Hirons KP, Mcneill JJ, Tove SB: Intermediates and products of the biohydrogenation of linoleic acid by butyrivibrio fibrisolvens. / J Biol Chem 1965, 241:1350-354.
    11. Griinari JM, Bauman DE: Biosynthesis of conjugated linoleic acid and its incorporation into meat and milk in ruminants. In / "Advances in Conjugated Linoleic Acid Research". / Volume 1. Edited by: Yurawecz MP, Mossaba MM, Kramer JKG, Pariza MW, Nelson GJ. Champaign, IL: AOCS Press; 1999:180-00.
    12. Griinari JM, Corl BA, Lacy SH, Chouinard PY, Nurmela KVV, Bauman DE: Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Δ9- desaturase. / J Nutr 2000, 130:2285-291.
    13. Kuchel H, Siebert BD, Bottema CDK, Webb GC, Crawfort AM, Duncan SJ: Physical mapping of the stearoyl-CoA desaturase ( SCD ) locus in sheep. / Anim Genet 2004, 35:142-67. CrossRef
    14. Carta A, Casu S, Usai MG, Addis M, Fiori M, Fraghì A, Miari S, Mura L, Piredda G, Schibler L, Sechi T, Elsen JM, Barillet F: Investigating the genetic component of fatty acid content in sheep milk. / Small Ruminant Res 2008, 79:22-8. CrossRef
    15. Taniguchi M, Mannen H, Oyama K, Shimakura Y, Oka A, Watanabe H, Kojima T, Komatsu M, Harper GS, Tsuji S: Differences in stearyol- CoA desaturase mRNA levels between Japanese black and Holstein cattle. / Livest Sci 2004, 87:215-20. CrossRef
    16. Moioli B, Contarini G, Avalli A, Catillo G, Orru L, De Matteis G, Masoero G, Napolitano F: Effect of Stearoyl-Coenzyme A desaturase polymorphism on fatty acid composition of milk. / J Dairy Sci 2007, 90:3553-558. CrossRef
    17. Miyazaki M, Ntambi JM: Role of stearoyl-coenzyme a desaturase in lipid metabolism. / Prostag Leukotr Ess 2003, 68:113-21. CrossRef
    18. Horton JD, Goldstein JL, Brown MS: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. / J Clin Invest 2002,109(9):1125-131.
    19. Kersten S, Desvergne B, Wahli W: Roles of PPARs in health and disease. / Nature 2000, 405:421-24. CrossRef
    20. Shimano H: Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes. / Prog Lipid Res 2001, 40:439-52. CrossRef
    21. Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, Brown MS, Goldstein JL: Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. / Proc Natl Acad Sci USA 2003, 100:12027-2032. CrossRef
    22. Schoonjans K, Staels B, Auwerx J: Role of the peroxisome proliferator activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. / J Lipid Res 1997, 37:907-25.
    23. Ntambi JM: Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. / J Lipid Res 1999, 40:1549-558.
    24. Miller CW, Ntambi JM: Peroxisome proliferators induce mouse liver stearoyl-CoAdesaturase 1 gene expresión. / Proc Natl Acad Sci USA 1996, 93:9443-448. CrossRef
    25. Hebbachi AM, Knight BL, Wiggins D, Patel DD, Gibbons GF: Peroxisome proliferator-activated receptor alpha deficiency abolishes the response of lipogenic gene expression to re-feeding. / J Biol Chem 2008,283(8):4866-876. CrossRef
    26. Yao-Borengasser A, Rassouli N, Varma V, Bodles AM, Rasouli N, Unal R, Phanavanh B, Ranganathan G, McGehee RE Jr, Kern PA: Stearoyl-coenzyme A desaturase 1 gene expression increases after pioglitazone treatment and is associated with peroxisomal proliferator-activated receptor-gamma responsiveness. / J Clin Endocrinol Metab 2008,93(11):4431-439. CrossRef
    27. Christianson JL, Nicoloro S, Straubhaar J, Czech MP: Stearoyl CoA desaturase 2 is required for PPARγ expression and adipogenesis in cultured 3T3-L1 cells. / J Biol Chem 2008, 283:2906-916. CrossRef
    28. Graugnard DE, Piantoni P, Bionaz M, Berger LL, Faulkner DB, Loor JJ: Adipogenic and energy metabolism gene networks in longissimus lumborum during rapid post-weaning growth in Angus and Angus × Simmental cattle fed high-starch or low-starch diets. / BMC Genomics 2009, 10:ARTN 142. CrossRef
    29. Waters SM, Kelly JP, O'Boyle P, Moloney AP, Kenny DA: Effect of level and duration of dietary n-3 polyunsaturated fatty acid supplementation on the transcriptional regulation of delta 9- desaturase in muscle of beef cattle. / J Anim Sci 2009, 87:244-52. CrossRef
    30. Daniel CTR, Wynn RJ, Salter AM, Buttery PJ: Differing effects of forage and concentrate diets on the oleic acid and conjugated linoleic acid content of sheep tissues: The role of stearoyl-CoA desaturase. / J Anim Sci 2004, 82:747-58.
    31. Vasta V, Priolo A, Scerra M, Hallett KG, Wood JD, Doran O: Δ 9 desaturase protein expression and fatty acid composition of longissimus dorsi muscle in lambs fed green herbage or concentrate with or without added tannins. / Meat Sci 2009, 82:357-64. CrossRef
    32. Velasco S, Ca?eque V, Lauzurica S, Perez C: Effect of different feeds on meat quality and fatty acid composition of lambs fattened at pasture. / Meat Sci 2004, 66:457-65. CrossRef
    33. Scerra M, Caparra P, Foti F, Galofaro V, Sinatra MC, Scerra V: Influence of ewe feeding systems on fatty acid composition of suckling lambs. / Meat Sci 2007, 76:390-94. CrossRef
    34. Santos-Silva J, Bessa RJB, Mendes IA: The effect of supplementation with expanded sunflower seed on carcass and meat quality of lambs raised on pasture. / Meat Sci 2003, 65:1301-308. CrossRef
    35. Joy M, Alvarez-Rodriguez J, Revilla R, Delfa R, Ripoll G: Ewe metabolic performance and lamb carcass traits in pasture and concentrate-based production systems in Churra Tensina breed. / Small Rum Res 2008, 75:24-5. CrossRef
    36. Aurousseau B, Bauchart D, Calichon E, Micol D, Priolo A: Effect of grass or concentrate feeding systems and rate of growth on triglyceride and phospholipid and their fatty acids in the M. longissimus thoracis of lambs. / Meat Sci 2004, 66:531-41. CrossRef
    37. Mir PS, McAllister TA, Scott S, Aalhus J, Baron V, McCartney D, Charmley E, Goonewardene L, Basarab J, Okine E, Weselake RJ, Mir Z: Conjugated linoleic acid-enriched beef production. / Am J Clin Nutr 2004,79(6):1207S-1211S.
    38. Lorenzen CL, Golden JW, Martz FA, Grun IU, Ellersieck MR, Gerrish JR, Moore KC: Conjugated linoleic acid content of beef differs by feeding regime and muscle. / Meat Sci 2007, 75:159-67. CrossRef
    39. Bas P, Morand-Fehr P: Effect of nutritional factors on fatty acid composition of lamb fat deposits. / Livest Prod Sci 2000, 64:61-9. CrossRef
    40. Fisher AV, Enser M, Richardson RI, Wood JD, Nute GR, Kurt E, Sinclair LA, Wilkinson RG: Fatty acid composition and eating quality of lamb types derived from four diverse breed × production systems. / Meat Sci 2000, 55:141-47. CrossRef
    41. Dhiman TR, Poulson CS, Cornforth D, Zo Bell DR: Conjugated linoleic acid (CLA) and vitamin E levels in pasture forages for beef cattle. / Agriculture 2006, 1-.
    42. French P, Stanton C, Lawless F, O'Riordan G, Monahan FJ, Caffrey PJ: Fatty acid composition including conjugated linoleic acid of intramuscular fat from steers offered grazed grass grass silage or concentrate-based diets. / J Anim Sci 2000, 78:2849-855.
    43. Wood D, Enser M: Factor's influencing fatty acid in meat and the role of antioxidants in improving meat quality. / Brit J Nutr 1997, 78:49-0. CrossRef
    44. Young-Cheul K, Ntambi JM: Regulation of Stearoyl-CoA Desaturase Genes: Role in Cellular Metabolism and Preadipocyte Differentiation. / Bioch Bioph Res Co 1999, 266:1-. CrossRef
    45. Delbecchi L, Ahnadi CE, Kennelly JJ, Lacasse P: Milk fatty acid composition and mammary lipid metabolism in Holstein cows fed protected or unprotected canola seeds. / J Dairy Sci 2001, 84:1375-381. CrossRef
    46. Wynn RJ, Daniel ZCTR, Flux CL, Craigon J, Salter AM, Buttery PJ: Effect of feeding rumen-protected conjugated linolec acid on carcass characteristics and fatty acid composition of sheep tissues. / J Anim Sci 2006, 84:3340-450. CrossRef
    47. Choi Y, Cheul Kim Y, Han YB, Park Y, Pariza MW, Ntambi JM: The trans -10, cis -12 Isomer of Conjugated Linoleic Acid Downregulates Stearoyl-CoA Desaturase 1 Gene Expression in 3T3-L1 Adipocytes. / J Nutr 2000, 1920-924.
    48. Ntambi JM: The regulation of stearoyl-CoA desaturase (SCD). / Prog Lipid Res 1995, 34:139-50. CrossRef
    49. Landau JM, Sekowski A, Hamm MW: Dietary cholesterol and the activity of stearoyl CoA desaturase in rats: evidence for an indirect regulatory effect. / Biochim Biophys Acta 1997, 1345:349-57.
    50. Ntambi JM, Miyazaki M, Stoehr JP, Lan H, Kendziorski CM, Yandell BS: Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. / Proc Natl Acad Sci USA 2002, 99:11482-1486. CrossRef
    51. Ntambi JM: Dietary regulation of stearoyl-CoA desaturase 1 gene expression in mouse liver. / Bio Chem 1992, 267:10925-0930.
    52. Choi Y, Park Y, Storkson JM, Pariza MW, Ntambi JM: Inhibition of stearoyl-CoA desaturase activity by the cis- 9, trans-11 isomer and the trans-10, cis-12 isomer of conjugated linoleic acid in MDA-MB-231 and MCF-7 human breast cancer cells. / Bioch Bioph Res Co 2002, 294:785-90. CrossRef
    53. Mziaut H, Korza G, Ozols J: The N terminus of microsomal D9 stearoyl-CoA desaturase contains the sequence determinant for its rapid degradation. / Biochemistry-US 2000, 97:8883-888.
    54. Taniguchi M, Mannen H, Oyama K, Shimakura Y, Oka A, Watanabe H, Kojima T, Komatsu M, Harper GS, Tsuji S: Differences in stearyol- CoA desaturase mRNA levels between Japanese black and Holstein cattle. / Livest Prod Sci 2004, 87:215-20. CrossRef
    55. Sa?udo C, Sanchez A, Alfonso M: Small ruminant production systems and factors affecting lamb meat quality. / Meat Sci 1998,49(Supplement 1):383-90.
    56. Bligh EG, Dyer WJ: A rapid method for total lipid extraction and purification. / Can J Biochem Physiol 1959, 37:911-17.
    57. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. / Genome Biol 2002, 0034.
    58. Larionov A, Krause A, Miller W: A standard curve based method for relative real time PCR data processing. / BMC Bioinformatics 2005, 6:62. CrossRef
  • 作者单位:Elda Dervishi (1)
    Carmen Serrano (2)
    Margalida Joy (1)
    Malena Serrano (3)
    Clementina Rodellar (2)
    Jorge H Calvo (1) (4)

    1. Unidad de Tecnología en Producción Animal, CITA, Zaragoza, Spain
    2. Laboratorio de Génetica Bioquímica (LAGENBIO), Dpto. Anatomia, Embriología y Genética Animal, Facultad de Veterinaria (Universidad de Zaragoza), Spain
    3. Departamento de Mejora Genética Animal, INIA-Madrid, Spain
    4. Fundación ARAID, Spain
文摘
Background Conjugated linoleic acids (CLAs) are receiving increasing attention because of their beneficial effects on human health, with milk and meat products derived from ruminants as important sources of CLA in the human diet. SCD gene is responsible for some of the variation in CLA concentration in adipose tissues, and PPARγ, PPARα and SREBP1 genes are regulator of SCD gene. The aim of this work was to evaluate the effect of the feeding system on fatty acid composition, CLA content and relative gene expression of Δ9-desaturase (SCD), Peroxisome Proliferator-Activated Receptor Gamma (PPARγ), Peroxisome Proliferator-Activated Receptor Alpha, (PPARα) and Sterol Regulatory Element Binding Protein (SREBP1) in Rasa Aragonesa light lambs in semitendinous muscle. Forty-four single-born male lambs were used to evaluate the effect of the feeding system, varying on an intensity gradient according to the use of concentrates: 1. grazing alfalfa, 2. grazing alfalfa with a supplement for lambs, 3. indoor lambs with grazing ewes and 4. drylot. Results Both grazing systems resulted in a higher concentration of vaccenic acid (VA), CLA, CLA/VA acid ratio, and a lower oleic content, oleic acid (C18:1)/stearic acid (C18:0) ratio, PUFA n-6/n-3 ratio and SCD expression compared to other diets. In addition feeding system affected the fatty acid composition and SCD expression, possibly due to CLA concentration or the PUFA n-6/n-3 ratio. Both expression of the SCD gene and the feeding system were important factors affecting CLA concentration in the animal's semitendinous muscle. PPARγ, PPARα and SREBP1 expression seemed to be unaffected by the feeding system. Although no significant results were found, PPARγ, PPARα and SREBP1 showed similar expression pattern as SCD. Moreover, the correlation results between SCD expression and PPARγ (p < 0.01), as well as SREBP1 (p < 0.01) expression, may suggest that these genes were affecting SCD expression in a different way. Conclusions The data indicated that the feeding system is the main factor affecting the fatty acid composition and SCD gene expression, which is also affected by CLA and possibly by n-6/n-3 PUFAs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700