Genome-wide annotation of the soybean WRKY family and functional characterization of genes involved in response to Phakopsora pachyrhizi infection
详细信息    查看全文
  • 作者:Marta Bencke-Malato (1)
    Caroline Cabreira (1)
    Beatriz Wiebke-Strohm (1)
    Lauro B眉cker-Neto (1)
    Estefania Mancini (2)
    Marina B Osorio (1)
    Milena S Homrich (1)
    Andreia Carina Turchetto-Zolet (1)
    Mayra CCG De Carvalho (3)
    Renata Stolf (3)
    Ricardo LM Weber (1)
    Gast贸n Westergaard (2)
    At铆lio P Castagnaro (4)
    Ricardo V Abdelnoor (3)
    Francismar C Marcelino-Guimar茫es (3)
    M谩rcia Margis-Pinheiro (1)
    Maria Helena Bodanese-Zanettini (1)

    1. Programa de P贸s-Gradua莽茫o em Gen茅tica e Biologia Molecular
    ; Universidade Federal do Rio Grande do Sul (UFRGS) ; Porto Alegre ; Brazil
    2. Instituto de Agrobiotecnologia Rosario SA
    ; Rosario ; Argentina
    3. Empresa Brasileira de Pesquisa Agropecu谩ria (Embrapa Soja)
    ; Londrina ; Brazil
    4. Estaci贸n Experimental Agroindustrial Obispo Colombres (EEAOC)
    ; Tucum谩n ; Argentina
  • 关键词:Glycine max ; Genetic transformation ; Fungus resistance ; Transcription factors ; Asian Soybean Rust ; Functional analysis
  • 刊名:BMC Plant Biology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:14
  • 期:1
  • 全文大小:3,182 KB
  • 参考文献:1. Miles MR, Frederick RD, Hartman GL: Evaluation of soybean germplasm for resistance to Phakopsora pachyrhizi . / Plant Health Prog 2006, doi:10.1094/PHP-2006-0104-01-RS.
    2. Ogle, HJ, Byth, DE, McLean, R (1979) Effect of rust (Phakopsora pachyrhizi) on soybean yield and quality in south-eastern Queensland. Australian J Agric Res 30: pp. 883-893 CrossRef
    3. Bromfield, KR (1984) Soybean Rust. Monograph No. 11. American Phytopathological Society, St. Paul, Minnesota
    4. Patil, VS, Wuike, RV, Thakare, CS, Chirame, BB (1997) Viability of uredospores of Phakopsora pachyrhizi Syd. at different storage conditions. J Maharashtra Agric Universities 22: pp. 260-261
    5. Bromfield, KR, Hartwig, EE (1980) Resistance to Soybean Rust and mode of inheritance. Crop Sci 20: pp. 254-255 CrossRef
    6. Cheng, YW, Chan, KL (1968) The breeding of 鈥楾ainung 3鈥?soybean. J Taiwan Agric Res 17: pp. 30-35
    7. Hidayat, OO, Somaatmadja, S (1977) Screening of soybean breeding lines for resistance to soybean rust (Phakopsora pachyrhizi Sydow). Soybean Rust Newsl 1: pp. 9-22
    8. Singh, BB, Thapliyal, PN Breeding for resistance to Soybean Rust in India. In: Ford, RE, Sinclair, JB eds. (1977) Rust of Soybean: The Problem and Research Needs. College of Agriculture, University of Illinois at Urbana-Champaign, Urbana, IL, pp. 62-65
    9. McLean, RJ, Byth, DE (1980) Inheritance in resistance to rust (Phakopsora pachyrhizi) in soybeans. Aust J Agric Res 31: pp. 951-956 CrossRef
    10. Hartwig, EE, Bromfield, KR (1983) Relationships among three genes conferring specific resistance to rust in soybeans. Crop Sci 23: pp. 237-239 CrossRef
    11. Hartwig, EE (1986) Identification of a fourth major gene conferring resistance to soybean rust. Crop Sci 26: pp. 1135-1136 CrossRef
    12. Monteros, MJ, Missaoui, AM, Phillips, DV, Walker, DR, Boerma, HR (2007) Mapping and confirmation of the 鈥楬yuuga鈥?red-brown lesion resistance gene for Asian Soybean Rust. Crop Sci 47: pp. 829-834 CrossRef
    13. Garcia, A, Calvo, ES, Souza, KRA, Harada, A, Hiromoto, DM, Vieira, LG (2008) Molecular mapping of soybean rust (Phakopsora pachyrhizi) resistance genes: discovery of a novel locus and alleles. Theor Appl Genet 117: pp. 545-553 CrossRef
    14. Li, S, Smith, JR, Ray, JD, Frederick, RD (2012) Identification of a new soybean rust resistance gene in PI 567102B. Theor Appl Genet 125: pp. 133-142 CrossRef
    15. Bonde, MR, Nester, SE, Austin, CN, Stone, CL, Frederick, RD, Hartman, GL, Miles, MR (2006) Evaluation of virulence of Phakopsora pachyrhizi and P. meibomiae isolates. Plant Dis 90: pp. 708-716 CrossRef
    16. Sconyers LE, Kemerait RC, Brock J, Phillips DV, Jost PH, Sikora EJ, Gutierrez-Estrada A, Mueller JD, Marois JJ, Wright DL, Harmon CL: Asian soybean rust development in 2005: A perspective from the Southeastern United States. In / APSnet Features 2006. doi:10.1094/APSnetFeatures-2006-0106.
    17. Mortel, M, Recknor, JC, Graham, MA, Nettleton, D, Dittman, JD, Nelson, RT, Godoy, CV, Abdelnoor, RV, Almeida, AMR, Baum, TJ, Whitham, SA (2007) Distinct biphasic mRNA changes in response to Asian soybean rust infection. Mol Plant Microbe Interact 20: pp. 887-899 CrossRef
    18. Panthee, DR, Yuan, JS, Wright, DL, Marois, JJ, Mailhot, D, Stewart, CN (2007) Gene expression analysis in soybean in response to the causal agent of Asian soybean rust (Phakopsora pachyrhizi Sydow) in an early growth stage. Funct Integr Genomics 7: pp. 291-301 CrossRef
    19. Panthee, DR, Marois, JJ, Wright, DL, Narvaez, D, Yuan, JS, Stewart, CN (2009) Differential expression of genes in soybean in response to the causal agent of Asian soybean rust (Phakopsora pachyrhizi Sydow) is soybean growth stage-specific. Theor Appl Genet 118: pp. 359-370 CrossRef
    20. Choi, JJ, Alkharouf, NW, Schneider, KT, Matthews, BF, Frederick, RD (2008) Expression patterns in soybean resistant to Phakopsora pachyrhizi reveal the importance of peroxidases and lipoxygenases. Funct Integr Genomics 8: pp. 341-359 CrossRef
    21. Tremblay, A, Hosseini, P, Alkharouf, N, Li, S, Matthewsa, BF (2010) Transcriptome analysis of a compatible response by Glycine max to Phakopsora pachyrhizi infection. Plant Sci 179: pp. 183-193 CrossRef
    22. Schneider, KT, Mortel, M, Bancroft, TJ, Braun, E, Nettleton, D, Nelson, RT, Frederick, RD, Baum, TJ, Graham, MA, Whitham, SA (2011) Biphasic gene expression changes elicited by Phakopsora pachyrhizi in soybean correlate with fungal penetration and haustoria formation. Plant Physiol 157: pp. 355-371 CrossRef
    23. Pandey, SP, Somssich, IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150: pp. 1648-1655 CrossRef
    24. Eulgem, T, Rushton, PJ, Robatzek, S, Somssich, IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5: pp. 199-206 CrossRef
    25. Xie, Z, Zhang, ZL, Zou, X, Huang, J, Ruas, P, Thompson, D, Shen, QJ (2005) Annotations and Functional Analyses of the Rice WRKY Gene Superfamily Reveal Positive and Negative Regulators of Abscisic Acid Signaling in Aleurone Cells. Plant Physiol 137: pp. 176-189 CrossRef
    26. Zhang, Y, Wang, L (2005) The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evolutionary Biol 5: pp. 1-12 CrossRef
    27. Wu, KL, Guo, ZJ, Wang, HH, Li, J (2005) The WRKY family of transcription factors in rice and arabidopsis and their origins. DNA Res 12: pp. 9-26 CrossRef
    28. Ross, CA, Liu, Y, Shen, QJ (2007) The WRKY Gene Family in Rice (Oryza sativa). J Integr Plant Biol 49: pp. 827-842 CrossRef
    29. He HS, Dong Q, Shao YH, Jiang HY, Zhu SW, Cheng B, Xiang Y: Genome-wide survey and characterization of the WRKY gene family in Populus trichocarpa. / Plant Cell Rep 2012, doi:10.1007/s00299鈥?12鈥?241鈥?.
    30. Wen F, Zhu H, Li P, Jiang M, Mao W, Ong C, Chu Z: Genome-wide evolutionary characterization and expression analyses of wrky family genes in brachypodium distachyon. / DNA Res 2014, 1鈥?3. doi:10.1093/dnares/dst060.
    31. Zhang, Y, Feng, J (2014) Identification and characterization of the grape WRKY family. BioMed Research International Article ID 787680: pp. 14
    32. Dou L, Zhang X, Pang C, Song M, Wei H, Fan S, Yu S: Genome鈥憌ide analysis of the WRKY gene family in cotton. / Mol Genet Genomics doi:10.1007/s00438-014-0872-y.
    33. 脺lker, B, Somssich, IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7: pp. 491-498 CrossRef
    34. Yamasaki, K, Kigawa, T, Inoue, M, Tateno, M, Yamasaki, T, Yabuki, T, Aoki, M, Seki, E, Matsuda, T, Tomo, Y, Hayami, N, Terada, T, Shirouzu, M, Tanaka, A, Seki, M, Shinozaki, K, Yokoyama, S (2005) Solution structure of an arabidopsis WRKY DNA binding domain. Plant Cell 17: pp. 944-956 CrossRef
    35. Maeo, K, Hayashi, S, Kojima-Suzuki, H, Morikami, A, Nakamura, K (2001) Role of conserved residues of the WRKY domain in the DNA-binding of tobacco WRKY family proteins. Biosci Biotech Biochem 65: pp. 2428-2436 CrossRef
    36. Eulgem, T, Somssich, IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10: pp. 366-371 CrossRef
    37. Ciolkowski, I, Wanke, D, Birkenbihl, RP, Somssich, IE (2008) Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Mol Biol 68: pp. 81-92 CrossRef
    38. Zhou, Q, Tian, A, Zou, H, Xie, Z, Lei, G, Huang, J, Wang, C, Wang, H, Zhang, J, Chen, S (2008) Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J 6: pp. 486-503 CrossRef
    39. Huang, S, Gao, Y, Liu, J, Peng, X, Niu, X, Fei, Z, Cao, S, Liu, Y (2012) Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum. Mol Genet Genomics 287: pp. 495-513 CrossRef
    40. Zhang, H, Jin, JP, Tang, L, Zhao, Y, Gu, XC, Gao, G, Luo, JC (2011) PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Res 39: pp. 1114-1117 CrossRef
    41. Wang, Z, Libault, M, Joshi, T, Valliyodan, B, Nguyen, H, Xu, D, Stacey, G, Cheng, J (2010) SoyDB: A Knowledge Database of Soybean Transcription Factors. BMC Plant Biol 10: pp. 14-26 CrossRef
    42. Soybean trancription factor knowledge base. [http://www.igece.org/Soybean_TF/]
    43. Zhang, L, Wang, X, Bi, Y, Zhang, C, Fan, Y, Lei, W (2008) Isolation and functional analysis of transcription factor GmWRKY57b from soybean. Chin Sci Bulletin 53: pp. 3538-3545 CrossRef
    44. Kang, SG, Park, E, Do, KS (2009) Identification of a pathogen-induced Glycine max transcription factor GmWRKY1. Plant Pathol J 25: pp. 381-388 CrossRef
    45. IGECE: http://systemsbiology.usm.edu/BrachyWRKY/WRKY/Soybean.html.
    46. LGE gen么mica e express茫o. [http://www.lge.ibi.unicamp.br/soja/]
    47. Severin, AJ, Woody, JL, Bolon, Y, Joseph, B, Diers, BW, Farmer, AD, Muehlbauer, GJ, Nelson, RT, Grant, D, Specht, JE, Graham, MA, Cannon, SB, May, GD, Vance, CP, Shoemaker, RC (2010) RNA-Seq Atlas of Glycine max: A guide to the soybean transcriptoma. BMC Plant Biol 10: pp. 160-176 CrossRef
    48. Grant, D, Nelson, R, Cannon, S, Shoemaker, R (2010) SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res 38: pp. D843-846 CrossRef
    49. Twizeyimana, M, Bandyopadhyay, R, Ojiambo, P, Paul, C, Hartman, GL (2006) A detached leaf method to evaluate soybean for resistance to rust National Soybean. Rust symposium. Proceedings of 2006 National Soybean rust symposium, Saint Louis.
    50. Schmutz, J, Cannon, SB, Schlueter, J, Ma, J, Mitros, T, Nelson, W, Hyten, DL, Song, Q, Thelen, JJ, Cheng, J, Xu, D, Hellsten, U, May, GD, Yu, Y, Sakurai, T, Umezawa, T, Bhattacharyya, MK, Sandhu, D, Valliyodan, B, Lindquist, E, Peto, M, Grant, D, Shu, S, Goodstein, D, Barry, K, Futrell-Griggs, M, Abernathy, B, Du, J, Tian, Z, Zhu, L, Gill, N, Joshi, T, Libault, M, Sethuraman, A, Zhang, XC, Shinozaki, K, Nguyen, HT, Wing, RA, Cregan, P, Specht, J, Grimwood, J, Rokhsar, D, Stacey, G, Shoemaker, RC, Jackson, SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463: pp. 178-184 CrossRef
    51. Freeling, M (2009) Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annual Rev Plant Biol 60: pp. 433-453 CrossRef
    52. Carretero-Paulet, L, Galstyan, A, Roig-Villanova, I, Martinez-Garcia, JF, Bilbao-Castro, JR, Robertson, DL (2010) Genome wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss and algae. Plant Physiol 153: pp. 1398-1412 CrossRef
    53. Rushton, PJ, Bokowiec, MT, Han, S, Zhang, H, Brannock, JF, Chen, X, Laudeman, TW, Timko, MP (2008) Tobacco transcription factors: novel insights into transcriptional regulation in the solanaceae. Plant Physiol 147: pp. 280-295 CrossRef
    54. Rushton, PJ, Somssich, IE, Ringler, P, Shen, QJ (2010) WRKY transcription factors. Trends Plant Sci 15: pp. 247-258 CrossRef
    55. Mangelsen, E, Kilian, J, Berendzen, KW, Kolukisaoglu, UH, Harter, K, Jansson, C, Wanke, D (2008) Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare) WRKY transcription factor family reveals putatively retained functions between monocots and dicots. BMC Genomics 9: pp. 194-211 CrossRef
    56. Verk, MC, Pappaioannou, D, Neeleman, L, Bol, JF, Linthorst, HJM (2008) A novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors. Plant Physiol 146: pp. 1983-1995 CrossRef
    57. Yang, B, Jiang, Y, Rahman, MH, Deyholos, MK, Kav, NNV (2009) Identification and expression analysis of WRKY transcription factor in canola (Brassica napus L.) in response to fungal pathogens and hormone treatments. BMC Plant Biol 9: pp. 68-87 CrossRef
    58. Giacomelli, JI, Ribichich, KF, Dezar, CA, Chan, RL (2010) Expression analyses indicate the involvement of sunflower WRKY transcription factors in stress responses, and phylogenetic reconstructions reveal the existence of a novel clade in the Asteraceae. Plant Sci 178: pp. 398-410 CrossRef
    59. Pandey, AK, Yang, C, Zhang, C, Graham, MA, Horstman, HD, Lee, Y, Zabotina, OA, Hill, JH, Pedley, KF, Whitham, SA (2011) Functional Analysis of the Asian Soybean Rust Resistance Pathway Mediated by Rpp2. Mol Plant Microbe Interact 24: pp. 194-206 CrossRef
    60. Goellner, K, Loehrer, M, Langenbach, C, Conrath, U, Koch, E, Schaffrath, U (2010) Phakopsora pachyrhizi, the causal agent of Asian soybean rust. Mol Plant Pathol 11: pp. 169-177 CrossRef
    61. Xu, X, Chen, C, Fan, B, Chen, Z (2006) Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18: pp. 1310-1326 CrossRef
    62. Chen, HC, Lai, Z, Shi, J, Xiao, Y, Chen, Z, Xu, X (2010) Roles of arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biol 10: pp. 281-296 CrossRef
    63. Yu, D, Chen, C, Chen, Z (2001) Evidence for an Important Role of WRKY DNA Binding Proteins in the Regulation of NPR1 Gene Expression. Plant Cell 13: pp. 1527-1539 CrossRef
    64. Wang, D, Amornsiripanitch, N, Dong, X (2006) A Genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. Plos Pathog 2: pp. 1042-1050 CrossRef
    65. Chen, C, Chen, Z (2002) potentiation of developmentally regulated plant defense response by atwrky18, a pathogen-induced arabidopsis transcription factor. Plant Physiol 129: pp. 706-716 CrossRef
    66. Ryu, H, Han, M, Lee, S, Cho, JI, Sunggi, HNR, Lee, YH, Bhoo, SH, Wang, GL, Hahn, TR, Jeon, JS (2006) A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response. Plant Cell Rep 25: pp. 836-847 CrossRef
    67. Zuo, J, Chua, N (2000) Chemical-inducible systems for regulated expression of plant genes. Curr Opin Biotechnol 11: pp. 146-151 CrossRef
    68. Altschul, SF, Gish, W, Miller, W, Myers, EW, Lipman, DJ (1990) Basic local alignment search tool. J Mol Biol 215: pp. 403-410 CrossRef
    69. The GENSCAN Web Server at MIT. [http://genes.mit.edu/GENSCAN.html]
    70. FEGENESH. [http://linux1.softberry.com/]
    71. Thompson, JD, Gibson, TJ, Plewniak, F, Jeanmougin, F, Higgins, DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24: pp. 4876-4882 CrossRef
    72. FancyGENE. [http://bio.ieo.eu/fancygene/]
    73. Edgar, RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: pp. 1792-1797 CrossRef
    74. Tamura, K, Peterson, D, Peterson, N, Stecher, G, Nei, M, Kumar, S (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 28: pp. 2731-2739 CrossRef
    75. Drummond, AJ, Rambaut, A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7: pp. 214 CrossRef
    76. Abascal, F, Zardoya, R, Posada, D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinforma 21: pp. 2104-2105 CrossRef
    77. Molecular Evolution, Phylogenetics and epidemiology - FigTree. [http://tree.bio.ed.ac.uk/software/figtree/]
    78. Matsumura, H, Krueger, DH, Kahl, G, Terauchi, R (2008) SuperSAGE: A Modern Platform for Genome-Wide Quantitative Transcript Profiling. Curr Pharm Biotechnol 9: pp. 368-374 CrossRef
    79. Robertson, N, Oveisi-Fordorei, M, Zuyderduyn, SD, Varhol, RJ, Fjell, C, Marra, M, Jones, C, Siddiqui, A (2007) DiscoverySpace: an interactive data analysis application. Genome Biol 8: pp. R6 CrossRef
    80. LGE Gen么mica e Express茫o. [http://www.lge.ibi.unicamp.br/soja/]
    81. Ribeiro, AS, Moreira, JUV, Pierozzi, PHB, Rachid, BF, Toledo, JFF, Arias, CAA, Soares, RM, Godoy, CV (2007) Genetic control of Asian rust in soybean. Euphytica 157: pp. 15-25 CrossRef
    82. Kerk, NM, Ceserani, T, Tausta, SL, Sussex, IM, Nelson, TM, Ceserani, T (2003) Laser capture microdissection of cells from plant tissues. Plant Physiol 132: pp. 27-35 CrossRef
    83. Cai, S, Lashbrook, CC (2006) Laser capture microdissection of plant cells from tape-transferred paraffin sections promotes recovery of structurally intact RNA for global gene profiling. Plant J 48: pp. 628-637 CrossRef
    84. Trapnell, C, Pachter, L, Salzberg, SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinforma 25: pp. 1105-1111 CrossRef
    85. Li, R, Yu, C, Li, Y, Lam, TW, Yiu, SM, Kristiansen, K, Wang, J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinforma 25: pp. 1966-1967 CrossRef
    86. Mortazavi, A, Williams, BA, McCue, K, Schaeffer, L, Wold, B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5: pp. 621-628 CrossRef
    87. Biotecsur. [http://bioinfo.cnpso.embrapa.br/biotecsoja/sistema_autenticacao/login.php]
    88. Kim, KS, Unfried, JR, Hyten, DL, Frederick, RD, Hartman, GL, Nelson, RL, Song, Q, Diers, BW (2012) Molecular mapping of soybean rust resistance in soybean accession PI 561356 and SNP haplotype analysis of the Rpp1 region in diverse germplasm. Theor Appl Genet 125: pp. 1339-1352 CrossRef
    89. Libault, M, Thibivilliers, S, Bilgin, DD, Radwan, O, Benitez, M, Clough, SJ, Stacey, G (2008) Identification of four soybean reference genes for gene expression normalization. Plant Genome 1: pp. 44-54 CrossRef
    90. Livak, KJ, Schmittgen, TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Methods 25: pp. 402-408 CrossRef
    91. Karimi, M, Inze, D, Depicker, A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7: pp. 193-195 CrossRef
    92. Droste, A, Pasquali, G, Bodanese-Zanettini, MH (2002) Transgenic fertile plants of soybean (Glycine max (L.) Merrill) obtained from bombarded embryogenic tissue. Euphytica 127: pp. 367-376 CrossRef
    93. Finer, JJ, Vain, P, Jones, MW, McMullen, MD (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep 11: pp. 323-328 CrossRef
    94. Wiebke-Strohm, B, Droste, A, Pasquali, G, Os贸rio, MB, Bucker-Neto, L, Passaglia, LMP, Bencke, M, Homrich, MS, Margis-Pinheiro, M, Bodanese-Zanettini, MH (2011) Transgenic fertile soybean plants derived from somatic embryos transformed via the combined DNA-free particle bombardment and Agrobacterium system. Euphytica 177: pp. 343-354 CrossRef
    95. Doyle, JJ, Doyle, JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19: pp. 11-15
  • 刊物主题:Plant Sciences; Agriculture; Tree Biology;
  • 出版者:BioMed Central
  • ISSN:1471-2229
文摘
Background Many previous studies have shown that soybean WRKY transcription factors are involved in the plant response to biotic and abiotic stresses. Phakopsora pachyrhizi is the causal agent of Asian Soybean Rust, one of the most important soybean diseases. There are evidences that WRKYs are involved in the resistance of some soybean genotypes against that fungus. The number of WRKY genes already annotated in soybean genome was underrepresented. In the present study, a genome-wide annotation of the soybean WRKY family was carried out and members involved in the response to P. pachyrhizi were identified. Results As a result of a soybean genomic databases search, 182 WRKY-encoding genes were annotated and 33 putative pseudogenes identified. Genes involved in the response to P. pachyrhizi infection were identified using superSAGE, RNA-Seq of microdissected lesions and microarray experiments. Seventy-five genes were differentially expressed during fungal infection. The expression of eight WRKY genes was validated by RT-qPCR. The expression of these genes in a resistant genotype was earlier and/or stronger compared with a susceptible genotype in response to P. pachyrhizi infection. Soybean somatic embryos were transformed in order to overexpress or silence WRKY genes. Embryos overexpressing a WRKY gene were obtained, but they were unable to convert into plants. When infected with P. pachyrhizi, the leaves of the silenced transgenic line showed a higher number of lesions than the wild-type plants. Conclusions The present study reports a genome-wide annotation of soybean WRKY family. The participation of some members in response to P. pachyrhizi infection was demonstrated. The results contribute to the elucidation of gene function and suggest the manipulation of WRKYs as a strategy to increase fungal resistance in soybean plants.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700