Estimating parameters and predicting membrane voltages with conductance-based neuron models
详细信息    查看全文
  • 作者:C. Daniel Meliza (1) (2)
    Mark Kostuk (3)
    Hao Huang (1)
    Alain Nogaret (4)
    Daniel Margoliash (1)
    Henry D. I. Abarbanel (5)
  • 关键词:Data assimilation ; Neuronal dynamics ; Ion channel properties ; Song system
  • 刊名:Biological Cybernetics
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:108
  • 期:4
  • 页码:495-516
  • 全文大小:3,578 KB
  • 参考文献:1. Abarbanel HDI (2009) Effective actions for statistical data assimilation. Phys Lett A 373:4044-048 CrossRef
    2. Abarbanel HDI (2013) Predicting the future: completing models of complex systems. Springer, New York CrossRef
    3. Abarbanel HDI, Creveling D, Jeanne J (2008) Estimation of parameters in nonlinear systems using balanced synchronization. Phys Rev E 77(016):208
    4. Abarbanel HDI, Creveling DR, Farsian R, Kostuk M (2009) Dynamical state and parameter estimation. SIAM J Appl Dyn Syst 8(4):1341-381 CrossRef
    5. Abarbanel HDI, Kostuk M, Whartenby W (2010) Data assimilation with regularized nonlinear instabilities. Q J Meteor Soc 136(648):769-83
    6. Abarbanel HDI, Bryant P, Gill PE, Kostuk M, Rofeh J, Singer Z, Toth B, Wong E (2011) Dynamical parameter and state estimation in neuron models. In: Glanzman D, Ding M (eds) The dynamic brain: an exploration of neuronal variability and its functional significance, chap 8. Oxford University Press, New York
    7. Achard P, Schutter ED (2006) Complex parameter landscape for a complex neuron model. PLoS Comput Biol 2(7):e94. doi:10.1371/journal.pcbi.0020094 CrossRef
    8. Amador A, Perl YS, Mindlin GB, Margoliash D (2013) Elemental gesture dynamics are encoded by song premotor cortical neurons. Nature 495(7439):59-4. doi:10.1038/nature11967 CrossRef
    9. Ayali A, Lange AB (2010) Rhythmic behaviour and pattern-generating circuits in the locust: key concepts and recent updates. J Insect Physiol 56(8):834-43. doi:10.1016/j.jinsphys.2010.03.015 CrossRef
    10. Baldi P, Vanier MC, Bower JM (1998) On the use of Bayesian methods for evaluating compartmental neural models. J Comput Neurosci 5:285-14 CrossRef
    11. Bean BP (2007a) The action potential in mammalian central neurons. Nat Rev Neurosci 8(6):451-65. doi:10.1038/nrn2148 CrossRef
    12. Bean BP (2007b) The action potential in mammalian central neurons. Nat Rev Neurosci 8(6):451-65. doi:10.1038/nrn2148 CrossRef
    13. Briggman KL, Abarbanel HDI, Kristan WB (2005) Optical imaging of neuronal populations during decision-making. Science 307:896-01 CrossRef
    14. Buhry L, Pace M, Saighi S (2012) Global parameter estimation of an Hodgkin–Huxley formalism using membrane voltage recordings: application to neuro-mimetic analog integrated circuits. Neurocomputing 81:75-5. doi:10.1016/j.neucom.2011.11.002 CrossRef
    15. Cerda O, Trimmer JS (2010) Analysis and functional implications of phosphorylation of neuronal voltage-gated potassium channels. Neurosci Lett 486(2):60-. doi:10.1016/j.neulet.2010.06.064 CrossRef
    16. Clewley R (2011) Inferring and quantifying the role of an intrinsic current in a mechanism for a half-center bursting oscillation: a dominant scale and hybrid dynamical systems analysis. J Biol Phys 37(3):285-06 CrossRef
    17. Daou A, Ross M, Johnson F, Hyson RL, Bertram R (2013) Electrophysiological characterization and computational models of HVC neurons in the zebra finch. J Neurophysiol. doi:10.1152/jn.00162.2013
    18. Druckmann S, Banitt Y, Gidon A, Schürmann F, Markram H, Segev I (2007) A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Front Neurosci 1(1):7-8. doi:10.3389/neuro.01.1.1.001.2007 CrossRef
    19. Druckmann S, Berger TK, Hill S, Schürmann F, Markram H, Segev I (2008) Evaluating automated parameter constraining procedures of neuron models by experimental and surrogate data. Biol Cybern 99(4-):371-. doi:10.1007/s00422-008-0269-2 CrossRef
    20. Dutar P, Vu HM, Perkel DJ (1998) Multiple cell types distinguished by physiological, pharmacological, and anatomic properties in nucleus HVc of the adult zebra finch. J Neurophysiol 80(4):1828 -838
    21. Fortune ES, Margoliash D (1995) Parallel pathways and convergence onto HVc and adjacent neostriatum of adult zebra finches (Taeniopygia guttata). J Comp Neurol 360(3):413-41. doi:10.1002/cne.903600305 CrossRef
    22. Foster WR, Ungar LH, Schwaber JS (1993) Significance of conductances in Hodgkin–Huxley models. J Neurophysiol 70(6):2502-518
    23. Geit WV, Schutter ED, Achard P (2008) Automated neuron model optimization techniques: a review. Biol Cybern 99:241-51. doi:10.1007/s00422-008-0257-6 CrossRef
    24. Gill PE, Murray W, Wright MH (1981) Practical optimization. Academic Press, London
    25. Gleeson P, Crook S, Cannon RC, Hines ML, Billings GO, Farinella M, Morse TM, Davison AP, Ray S, Bhalla US, Barnes SR, Dimitrova YD, Silver RA (2010) NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS Comput Biol 6(6):e1000,815. doi:10.1371/journal.pcbi.1000815 CrossRef
    26. Golowasch J, Goldman MS, Abbott LF, Marder E (2002) Failure of averaging in the construction of a conductance-based neuron model. J Neurophysiol 87(2):1129-1
    27. Günay C, Edgerton JR, Jaeger D (2008) Channel density distributions explain spiking variability in the globus pallidus: a combined physiology and computer simulation database approach. J Neurosci 28(30):7476-491. doi:10.1523/JNEUROSCI.4198-07.2008 CrossRef
    28. Hahnloser RHR, Kozhevnikov AA, Fee MS (2002) An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature 419:65-0 CrossRef
    29. Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1):97 CrossRef
    30. Hendrickson EB, Edgerton JR, Jaeger D (2011) The use of automated parameter searches to improve ion channel kinetics for neural modeling. J Comput Neurosci 31(2):329-46. doi:10.1007/s10827-010-0312-x CrossRef
    31. Herz AVM, Gollisch T, Machens CK, Jaeger D (2006) Modeling single-neuron dynamics and computations: a balance of detail and abstraction. Science 314(5796):80-5. doi:10.1126/science.1127240 CrossRef
    32. Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9(6):1179-209 CrossRef
    33. Hobbs KH, Hooper SL (2008) Using complicated, wide dynamic range driving to develop models of single neurons in single recording sessions. J Neurophysiol 99(4):1871-3. doi:10.1152/jn.00032.2008 CrossRef
    34. Hochberg D, Molina-París C, Pérez-Mercader J, Visser M (1999) Effective action of stochastic partial differential equations. Phys Rev E 60(6):6343-360 CrossRef
    35. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond) 117(4):500-4
    36. Huijberts HJC, Lilge T, Nijmeijer H (2001) Nonlinear discrete-time synchronization via extended observers. Int J Bifurcat Chaos 11(7):1997-006 CrossRef
    37. Huys QJM, Paninski L (2009) Smoothing of, and parameter estimation from, noisy biophysical recordings. PLoS Comput Biol 5(5):e1000,379. doi:10.1371/journal.pcbi.1000379 CrossRef
    38. Huys QJM, Ahrens MB, Paninski L (2006) Efficient estimation of detailed single-neuron models. J Neurophysiol 96(2):872-0. doi:10.1152/jn.00079.2006 CrossRef
    39. Jin D, Ramazano?lu F, Seung H (2007) Intrinsic bursting enhances the robustness of a neural network model of sequence generation by avian brain area HVC. J Comput Neurosci 23(3):283-99 CrossRef
    40. Jin L, Han Z, Platisa J, Wooltorton JR, Cohen LB, Pieribone VA (2012) Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron 75(5):779-85. doi:10.1016/j.neuron.2012.06.040 CrossRef
    41. Johnston J, Forsythe ID, Kopp-Scheinpflug C (2010) Going native: voltage-gated potassium channels controlling neuronal excitability. J Physiol (Lond) 588(Pt 17):3187-200. doi:10.1113/jphysiol.2010.191973 CrossRef
    42. Jolivet R, Lewis TJ, Gerstner W (2004) Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. J Neurophysiol 92(2):959-6. doi:10.1152/jn.00190.2004 CrossRef
    43. Jolivet R, Kobayashi R, Rauch A, Naud R, Shinomoto S, Gerstner W (2008a) A benchmark test for a quantitative assessment of simple neuron models. J Neurosci Methods 169(2):417-24. doi:10.1016/j.jneumeth.2007.11.006 CrossRef
    44. Jolivet R, Schürmann F, Berger TK, Naud R, Gerstner W, Roth A (2008b) The quantitative single-neuron modeling competition. Biol Cybern 99(4-):417-26. doi:10.1007/s00422-008-0261-x CrossRef
    45. Jouvet B, Phythian R (1979) Quantum aspects of classical and statistical fields. Phys Rev A 19(3):1350-355 CrossRef
    46. Kew JNC, Davies CH (eds) (2010) Ion channels: from structure to function. Oxford University Press, New York
    47. Kobayashi R, Tsubo Y, Shinomoto S (2009) Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold. Front Comput Neurosci 3:9. doi:10.3389/neuro.10.009.2009 CrossRef
    48. Kole MH, Hallermann S, Stuart GJ (2006) Single Ih channels in pyramidal neuron dendrites: properties, distribution, and impact on action potential output. J Neurosci 26(6):1677-687. doi:10.1523/JNEUROSCI.3664-05.2006 CrossRef
    49. Kostuk M, Toth BA, Meliza CD, Margoliash D, Abarbanel HDI (2012) Dynamical estimation of neuron and network properties II: path integral monte carlo methods. Biol Cybern 106(3):155-67. doi:10.1007/s00422-012-0487-5 CrossRef
    50. Kubota M, Saito N (1991) Sodium- and calcium-dependent conductances of neurones in the zebra finch hyperstriatum ventrale pars caudale in vitro. J Physiol (Lond) 440:131-42
    51. Kubota M, Taniguchi I (1998) Electrophysiological characteristics of classes of neuron in the HVc of the zebra finch. J Neurophysiol 80(2):914-23
    52. Lepora NF, Overton PG, Gurney K (2011) Efficient fitting of conductance-based model neurons from somatic current clamp. J Comput Neurosci. doi:10.1007/s10827-011-0331-2
    53. Long MA, Jin DZ, Fee MS (2010) Support for a synaptic chain model of neuronal sequence generation. Nature 468(7322):394-. doi:10.1038/nature09514 CrossRef
    54. Marder E, Bucher D (2007) Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu Rev Physiol 69:291-16. doi:10.1146/annurev.physiol.69.031905.161516 CrossRef
    55. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087-092
    56. Mooney R (2000) Different subthreshold mechanisms underlie song selectivity in identified HVc neurons of the zebra finch. J Neurosci 20(14):5420-436
    57. Mooney R, Prather JF (2005) The HVC microcircuit: the synaptic basis for interactions between song motor and vocal plasticity pathways. J Neurosci 25(8):1952-964. doi:10.1523/JNEUROSCI.3726-04.2005 CrossRef
    58. Nixdorf B, Davis S, DeVoogd T (1989) Morphology of Golgi-impregnated neurons in hyperstriatum ventralis, pars caudalis in adult male and female canaries. J Comp Neurol 284(3):337-49. doi:10.1002/cne.902840302 CrossRef
    59. Olypher AV, Calabrese RL (2007) Using constraints on neuronal activity to reveal compensatory changes in neuronal parameters. J Neurophysiol 98(6):3749-8. doi:10.1152/jn.00842.2007 CrossRef
    60. Pospischil M, Toledo-Rodriguez M, Monier C, Piwkowska Z, Bal T, Frégnac Y, Markram H, Destexhe A (2008) Minimal Hodgkin–Huxley type models for different classes of cortical and thalamic neurons. Biol Cybern 99(4-):427-41. doi:10.1007/s00422-008-0263-8 CrossRef
    61. Prinz AA, Billimoria CP, Marder E (2003) Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. J Neurophysiol 90(6):3998-015. doi:10.1152/jn.00641.2003 CrossRef
    62. Prinz AA, Bucher DEM (2004) Similar network activity from disparate circuit parameters. Nat Neurosci 7:1345-352 CrossRef
    63. Ransdell J, Nair S, Schulz D (2013) Neurons within the same network independently achieve conserved output by differentially balancing variable conductance magnitudes. J Neurosci 33(24):9950-956. doi:10.1523/JNEUROSCI.1095-13.2013 CrossRef
    64. Reid MS, Brown EA, DeWeerth SP (2007) A parameter-space search algorithm tested on a Hodgkin–Huxley model. Biol Cybern 96(6):625-34. doi:10.1007/s00422-007-0156-2 CrossRef
    65. Restrepo JM (2008) A path integral method for data assimilation. Physica D 237:14-7 CrossRef
    66. Roberts TF, Klein ME, Kubke MF, Wild JM, Mooney R (2008) Telencephalic neurons monosynaptically link brainstem and forebrain premotor networks necessary for song. J Neurosci 28(13):3479-489. doi:10.1523/JNEUROSCI.0177-08.2008 CrossRef
    67. Sarkar AX, Christini DJ, Sobie EA (2012) Exploiting mathematical models to illuminate electrophysiological variability between individuals. J Physiol (Lond) 590(Pt 11):2555-7. doi:10.1113/jphysiol.2011.223313 CrossRef
    68. Schenk O, Bollhoefer M, G?rtner K (2008) On large-scale diagonalization techniques for the Anderson model of localization. SIAM Rev 50:91-12 CrossRef
    69. Schulz DJ, Goaillard JM, Marder E (2006) Variable channel expression in identified single and electrically coupled neurons in different animals. Nat Neurosci 9(3):356-62. doi:10.1038/nn1639 CrossRef
    70. Shea SD, Koch H, Baleckaitis D, Ramirez JM, Margoliash D (2010) Neuron-specific cholinergic modulation of a forebrain song control nucleus. J Neurophysiol 103(2):733-45. doi:10.1152/jn.00803.2009 CrossRef
    71. Swensen AM, Bean BP (2005) Robustness of burst firing in dissociated Purkinje neurons with acute or long-term reductions in sodium conductance. J Neurosci 25(14):3509-0. doi:10.1523/JNEUROSCI.3929-04.2005 CrossRef
    72. Szendro IG, Rodríguez MA, López JM (2009) On the problem of data assimilation by means of synchronization. J Geophys Rev. doi:10.1029/2009JD012411
    73. Tomaiuolo M, Bertram R, Leng G, Tabak J (2012) Models of electrical activity: calibration and prediction testing on the same cell. Biophys J 103(9):2021-032. doi:10.1016/j.bpj.2012.09.034 CrossRef
    74. Toth BA, Kostuk M, Meliza CD, Margoliash D, Abarbanel HDI (2011) Dynamical estimation of neuron and network properties I: variational methods. Biol Cybern 105:217-37. doi:10.1007/s00422-011-0459-1 CrossRef
    75. Trimmer J, Rhodes K (2004) Localization of voltage-gated ion channels in mammalian brain. Annu Rev Physiol 66(1):477-19. doi:10.1146/annurev.physiol.66.032102.113328 CrossRef
    76. Vanier MC, Bower JM (1999) A comparative survey of automated parameter-search methods for compartmental neural models. J Comput Neurosci 7(2):149-71. doi:10.1023/A:1008972005316 CrossRef
    77. Vavoulis DV, Straub VA, Aston JAD, Feng J (2012) A self-organizing state-space-model approach for parameter estimation in Hodgkin–Huxley-type models of single neurons. PLoS Comput Biol. doi:10.1371/journal.pcbi.1002401
    78. W?chter A (2002) An interior point algorithm for large-scale nonlinear optimization with applications in process engineering. Phd thesis, Carnegie Mellon University
    79. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE T Evolut Comput 1(1):67-2 CrossRef
  • 作者单位:C. Daniel Meliza (1) (2)
    Mark Kostuk (3)
    Hao Huang (1)
    Alain Nogaret (4)
    Daniel Margoliash (1)
    Henry D. I. Abarbanel (5)

    1. Department of Organismal Biology and Anatomy, University of Chicago, 1027 E 57th Street, Chicago, IL, 60637, USA
    2. Department of Psychology, University of Virginia, PO Box 400400, Charlottesville, VA, 22904, USA
    3. Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0402, USA
    4. Department of Physics, University of Bath, Claverton Down, Bath, UK
    5. Department of Physics and Marine Physical Laboratory (Scripps Institution of Oceanography), Center for Theoretical Biological Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0374, USA
  • ISSN:1432-0770
文摘
Recent results demonstrate techniques for fully quantitative, statistical inference of the dynamics of individual neurons under the Hodgkin–Huxley framework of voltage-gated conductances. Using a variational approximation, this approach has been successfully applied to simulated data from model neurons. Here, we use this method to analyze a population of real neurons recorded in a slice preparation of the zebra finch forebrain nucleus HVC. Our results demonstrate that using only 1,500?ms of voltage recorded while injecting a complex current waveform, we can estimate the values of 12 state variables and 72 parameters in a dynamical model, such that the model accurately predicts the responses of the neuron to novel injected currents. A less complex model produced consistently worse predictions, indicating that the additional currents contribute significantly to the dynamics of these neurons. Preliminary results indicate some differences in the channel complement of the models for different classes of HVC neurons, which accords with expectations from the biology. Whereas the model for each cell is incomplete (representing only the somatic compartment, and likely to be missing classes of channels that the real neurons possess), our approach opens the possibility to investigate in modeling the plausibility of additional classes of channels the cell might possess, thus improving the models over time. These results provide an important foundational basis for building biologically realistic network models, such as the one in HVC that contributes to the process of song production and developmental vocal learning in songbirds.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700