Bacterial versus fungal laccase: potential for micropollutant degradation
详细信息    查看全文
  • 作者:Jonas Margot (5) (5)
    Chloé Bennati-Granier (5) (5)
    Julien Maillard (5)
    Paqui Blánquez (5)
    David A Barry (5)
    Christof Holliger (5)
  • 关键词:Laccase ; Streptomyces spp ; Trametes versicolor ; Micropollutant ; Wastewater ; Oxidation
  • 刊名:AMB Express
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:3
  • 期:1
  • 全文大小:370 KB
  • 参考文献:1. Alan MV, Barber LB, Gray JL, Lopez EM, Woodling JD, Norris DO: Reproductive disruption in fish downstream from an estrogenic wastewater effluent. / Environ Sci Technol 2008,42(9):3407-414. CrossRef
    2. Arias ME, Arenas M, Rodríguez J, Soliveri J, Ball AS, Hernández M: Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335. / Appl Environ Microbiol 2003,69(4):1953-958. CrossRef
    3. Auriol M, Filali-Meknassi Y, Adams CD, Tyagi RD, Noguerol TN, Pina B: Removal of estrogenic activity of natural and synthetic hormones from a municipal wastewater: efficiency of horseradish peroxidase and laccase from Trametes versicolor . / Chemosphere 2008,70(3):445-52. CrossRef
    4. Aymard C, Belarbi A: Kinetics of thermal deactivation of enzymes: a simple three parameters phenomenological model can describe the decay of enzyme activity, irrespectively of the mechanism. / Enzyme Microb Technol 2000,27(8):612-18. CrossRef
    5. Blánquez P, Casas N, Font X, Gabarrell X, Sarrà M, Caminal G, Vicent T: Mechanism of textile metal dye biotransformation by Trametes versicolor . / Water Res 2004,38(8):2166-172. CrossRef
    6. Blánquez P, Sarrà M, Vicent MT: Study of the cellular retention time and the partial biomass renovation in a fungal decolourisation continuous process. / Water Res 2006,40(8):1650-656. CrossRef
    7. Blánquez P, Sarrà M, Vicent T: Development of a continuous process to adapt the textile wastewater treatment by fungi to industrial conditions. / Process Biochem 2008,43(1):1-. CrossRef
    8. Bourbonnais R, Paice MG, Reid ID, Lanthier P, Yaguchi M: Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. / Appl Environ Microbiol 1995,61(5):1876-880.
    9. Bugg TDH, Ahmad M, Hardiman EM, Singh R: The emerging role for bacteria in lignin degradation and bio-product formation. / Curr Opin Biotechnol 2011,22(3):394-00. CrossRef
    10. Bundschuh M, Pierstorf R, Schreiber WH, Schulz R: Positive effects of wastewater ozonation displayed by in situ bioassays in the receiving stream. / Environ Sci Technol 2011,45(8):3774-780. CrossRef
    11. Cabana H, Jiwan JLH, Rozenberg R, Elisashvili V, Penninckx M, Agathos SN, Jones JP: Elimination of endocrine disrupting chemicals nonylphenol and bisphenol a and personal care product ingredient triclosan using enzyme preparation from the white rot fungus Coriolopsis polyzona . / Chemosphere 2007,67(4):770-78. CrossRef
    12. Childs RE, Bardsley WG: The steady state kinetics of peroxidase with 2,2' azino di (3 ethylbenzthiazoline 6 sulphonic acid) as chromogen. / Biochem J 1975,145(1):93-03.
    13. Crain DA, Eriksen M, Iguchi T, Jobling S, Laufer H, LeBlanc GA, Guillette LJ Jr: An ecological assessment of bisphenol-A: evidence from comparative biology. / Reprod Toxicol 2007,24(2):225-39. CrossRef
    14. De Souza CGM, Tychanowicz GK, De Souza DF, Peralta RM: Production of laccase isoforms by Pleurotus pulmonarius in response to presence of phenolic and aromatic compounds. / J Basic Microbiol 2004,44(2):129-36. CrossRef
    15. Deblonde T, Cossu-Leguille C, Hartemann P: Emerging pollutants in wastewater: a review of the literature. / Int J Hyg Envir Heal 2011,214(6):442-48. CrossRef
    16. Dwivedi UN, Singh P, Pandey VP, Kumar A: Structure-function relationship among bacterial, fungal and plant laccases. / J Mol Catal B Enzym 2011,68(2):117-28. CrossRef
    17. Eichlerová I, ?najdr J, Baldrian P: Laccase activity in soils: considerations for the measurement of enzyme activity. / Chemosphere 2012,88(10):1154-160. CrossRef
    18. Enaud E, Trovaslet M, Naveau F, Decristoforo A, Bizet S, Vanhulle S, Jolivalt C: Laccase chloride inhibition reduction by an anthraquinonic substrate. / Enzyme Microb Technol 2011,49(6-):517-25. CrossRef
    19. Endo K, Hosono K, Beppu T, Ueda K: A novel extracytoplasmic phenol oxidase of Streptomyces : its possible involvement in the onset of morphogenesis. / Microbiology 2002,148(6):1767-776.
    20. Fernández-Fernández M, Sanromán Má, Moldes D: Recent developments and applications of immobilized laccase. / Biotechnol Adv 2012. http://dx.doi.org/10.1016/j.biotechadv.2012.02.013
    21. Gagné F, Bouchard B, André C, Farcy E, Fournier M: Evidence of feminization in wild Elliptio complanata mussels in the receiving waters downstream of a municipal effluent outfall, comp biochem physiol C. / Pharmacol Toxicol 2011,153(1):99-06.
    22. Garcia HA, Hoffman CM, Kinney KA, Lawler DF: Laccase-catalyzed oxidation of oxybenzone in municipal wastewater primary effluent. / Water Res 2011,45(5):1921-932. CrossRef
    23. Gianfreda L, Xu F, Bollag J-M: Laccases: a useful group of oxidoreductive enzymes. / Biorem J 1999,3(1):1-6. CrossRef
    24. Harkin JM, Rowe JW: / Bark and its possible uses. U.S. Forest service research legacy. Madison, Wisconsin, USA: Forest Products Laboratory (U.S.); 1971. http://www.fpl.fs.fed.us/documnts/fplrn/fplrn091.pdf
    25. Harms H, Schlosser D, Wick LY: Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. / Nat Rev Microbiol 2011,9(3):177-92. CrossRef
    26. Hong G, Ivnitski DM, Johnson GR, Atanassov P, Pachter R: Design parameters for tuning the type 1 Cu multicopper oxidase redox potential: Insight from a combination of first principles and empirical molecular dynamics simulations. / J Am Chem Soc 2011,133(13):4802-809. CrossRef
    27. Kase R, Eggen RIL, Junghans M, G?tz C, Hollender J: Assessment of micropollutants from municipal wastewater - Combination of exposure and ecotoxicological effect data for Switzerland. In / Waste water - evaluation and management. Edited by: Einschlag F. Rijeka, Croatia: InTech; 2011:31-4.
    28. Koduri RS, Tien M: Oxidation of guaiacol by lignin peroxidase: role of veratryl alcohol. / J Biol Chem 1995,270(38):22254-2258. CrossRef
    29. Koschorreck K, Richter SM, Swierczek A, Beifuss U, Schmid RD, Urlacher VB: Comparative characterization of four laccases from Trametes versicolor concerning phenolic C-C coupling and oxidation of PAHs. / Arch Biochem Biophys 2008,474(1):213-19. CrossRef
    30. Kurniawati S, Nicell JA: Characterization of Trametes versicolor laccase for the transformation of aqueous phenol. / Bioresour Technol 2008,99(16):7825-834. CrossRef
    31. Lefebvre O, Moletta R: Treatment of organic pollution in industrial saline wastewater: a literature review. / Water Res 2006,40(20):3671-682. CrossRef
    32. Leutz RC: The recovery of sodium chloride from sea water. / Int J Miner Process 1974,1(2):163-71. CrossRef
    33. Libra JA, Borchert M, Banit S: Competition strategies for the decolorization of a textile-reactive dye with the white-rot fungi Trametes versicolor under non-sterile conditions. / Biotechnol Bioeng 2003,82(6):736-44. CrossRef
    34. Lu J, Huang Q, Mao L: Removal of acetaminophen using enzyme-mediated oxidative coupling processes: I. Reaction rates and pathways. / Environ Sci Technol 2009,43(18):7062-067. CrossRef
    35. Mai C, Schormann W, Milstein O, Hüttermann A: Enhanced stability of laccase in the presence of phenolic compounds. / Appl Microbiol Biotechnol 2000,54(4):510-14. CrossRef
    36. Marco-Urrea E, Pérez-Trujillo M, Blánquez P, Vicent T, Caminal G: Biodegradation of the analgesic naproxen by Trametes versicolor and identification of intermediates using HPLC-DAD-MS and NMR. / Bioresour Technol 2010,101(7):2159-166. CrossRef
    37. Margot J, Kienle C, Magnet A, Weil M, Rossi L, de Alencastro LF, Abegglen C, Thonney D, Chèvre N, Sch?rer M, Barry DA: Treatment of micropollutants in municipal wastewater: ozone or powdered activated carbon? / Sci Total Environ 2013a, 461-62:480-98. CrossRef
    38. Margot J, Maillard J, Rossi L, Barry DA, Holliger C: Influence of treatment conditions on the oxidation of micropollutants by Trametes versicolor laccase. / N Biotechnol 2013b,30(6):803-13. CrossRef
    39. Moldes D, Sanromán MA: Amelioration of the ability to decolorize dyes by laccase: relationship between redox mediators and laccase isoenzymes in Trametes versicolor . / World J Microbiol Biotechnol 2006,22(11):1197-204. CrossRef
    40. Moldes D, Lorenzo M, Sanromán MA: Different proportions of laccase isoenzymes produced by submerged cultures of Trametes versicolor grown on lignocellulosic wastes. / Biotechnol Lett 2004,26(4):327-30. CrossRef
    41. Molina-Guijarro JM, Pérez J, Mu?oz-Dorado J, Guillén F, Moya R, Hernández M, Arias ME: Detoxification of azo dyes by a novel pH-versatile, salt-resistant laccase from Streptomyces ipomoea . / Int Microbiol 2009,12(1):13-1.
    42. Moya R, Hernández M, García-Martín AB, Ball AS, Arias ME: Contributions to a better comprehension of redox-mediated decolouration and detoxification of azo dyes by a laccase produced by Streptomyces cyaneus CECT 3335. / Bioresour Technol 2010,101(7):2224-229. CrossRef
    43. Mu?oz C, Guillén F, Martínez AT, Martínez MJ: Laccase isoenzymes of Pleurotus eryngii : characterization, catalytic properties, and participation in activation of molecular oxygen and Mn 2+ oxidation. / Appl Environ Microbiol 1997,63(6):2166-174.
    44. Nakatani M, Hibi M, Minoda M, Ogawa J, Yokozeki K, Shimizu S: Two laccase isoenzymes and a peroxidase of a commercial laccase-producing basidiomycete, Trametes sp. Ha1. / N Biotechnol 2010,27(4):317-23. CrossRef
    45. Niladevi KN, Prema P: Effect of inducers and process parameters on laccase production by Streptomyces psammoticus and its application in dye decolourization. / Bioresour Technol 2008,99(11):4583-589. CrossRef
    46. Niladevi KN, Jacob N, Prema P: Evidence for a halotolerant-alkaline laccase in Streptomyces psammoticus : purification and characterization. / Process Biochem 2008,43(6):654-60. CrossRef
    47. Niladevi KN, Sukumaran RK, Jacob N, Anisha GS, Prema P: Optimization of laccase production from a novel strain Streptomyces psammoticus using response surface methodology. / Microbiol Res 2009,164(1):105-13. CrossRef
    48. Nyanhongo GS, Guebitz G, Sukyai P, Leitner C, Haltrich D, Ludwig R: Oxidoreductases from Trametes spp. in biotechnology: a wealth of catalytic activity. / Food Technol Biotech 2007,45(3):250-68.
    49. ?z??len F, Aytar P, Gedikli S, ?elikdemir M, Ardi? M, ?abuk A: Enhanced production and stability of laccase using some fungi on different lignocellulosic materials. / J Appl Biol Sci 2010,4(3):69-8.
    50. Palmieri G, Giardina P, Bianco C, Scaloni A, Capasso A, Sannia G: A novel white laccase from Pleurotus ostreatus . / J Biol Chem 1997,272(50):31301-1307. CrossRef
    51. Parenti A, Muguerza E, Redin Iroz A, Omarini A, Conde E, Alfaro M, Castanera R, Santoyo F, Ramírez L, Pisabarro AG: Induction of laccase activity in the white rot fungus Pleurotus ostreatus using water polluted with wheat straw extracts. / Bioresour Technol 2013, 133:142-49. CrossRef
    52. Rajkumar D, Palanivelu K: Electrochemical treatment of industrial wastewater. / J Hazard Mater 2004,113(1-):123-29. CrossRef
    53. Ranca?o G, Lorenzo M, Molares N, Couto SR, Sanromán Má: Production of laccase by Trametes versicolor in an airlift fermentor. / Process Biochem 2003,39(4):467-73. CrossRef
    54. Reiss R, Ihssen J, Th?ny-Meyer L: Bacillus pumilus laccase: a heat stable enzyme with a wide substrate spectrum. / BMC Biotechnol 2011, 11:9. CrossRef
    55. Rosado T, Bernardo P, Koci K, Coelho AV, Robalo MP, Martins LO: Methyl syringate: an efficient phenolic mediator for bacterial and fungal laccases. / Bioresour Technol 2012, 124:371-78. CrossRef
    56. Sadana A: Enzyme deactivation. / Biotechnol Adv 1988,6(3):349-46. IN1-IN2 CrossRef
    57. Schwarz J, Aust M-O, Thiele-Bruhn S: Metabolites from fungal laccase-catalysed transformation of sulfonamides. / Chemosphere 2010,81(11):1469-476. CrossRef
    58. Sharma P, Goel R, Capalash N: Bacterial laccases. / World J Microbiol Biotechnol 2007,23(6):823-32. CrossRef
    59. Shirling EB, Gottlieb D: Methods for characterization of Streptomyces species. / Int J Syst Bacteriol 1966,16(3):313-40. CrossRef
    60. Silvério SC, Rodríguez O, Tavares APM, Teixeira JA, Macedo EA: Laccase recovery with aqueous two-phase systems: enzyme partitioning and stability. / J Mol Catal B Enzym 2013, 87:37-3. CrossRef
    61. Strong PJ, Claus H: Laccase: a review of its past and its future in bioremediation. / Crit Rev Env Sci Technol 2011,41(4):373-34. CrossRef
    62. Suda T, Hata T, Kawai S, Okamura H, Nishida T: Treatment of tetracycline antibiotics by laccase in the presence of 1-hydroxybenzotriazole. / Bioresour Technol 2012,103(1):498-01. CrossRef
    63. Telke AA, Kalyani DC, Jadhav UU, Parshetti GK, Govindwar SP: Purification and characterization of an extracellular laccase from a Pseudomonas sp LBC1 and its application for the removal of bisphenol A. / J Mol Catal B Enzym 2009,61(3-):252-60. CrossRef
    64. Torres-Duarte C, Roman R, Tinoco R, Vazquez-Duhalt R: Halogenated pesticide transformation by a laccase-mediator system. / Chemosphere 2009,77(5):687-92. CrossRef
    65. Triebskorn R, Casper H, Heyd A, Eikemper R, K?hler HR, Schwaiger J: Toxic effects of the non-steroidal anti-inflammatory drug diclofenac: Part II. Cytological effects in liver, kidney, gills and intestine of rainbow trout ( Oncorhynchus mykiss ). / Aquat Toxicol 2004,68(2):151-66. CrossRef
    66. Xu F: Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. / Biochemistry 1996,35(23):7608-614. CrossRef
    67. Xu F: Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases. / J Biol Chem 1997,272(2):924-28. CrossRef
    68. Xu F, Shin W, Brown SH, Wahleithner JA, Sundaram UM, Solomon EI: A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. / Biochim Biophys Acta Protein Struct Mol Enzymol 1996,1292(2):303-11. CrossRef
    69. Yang Y, Ding Y, Liao X, Cai Y: Purification and characterization of a new laccase from Shiraia sp. SUPER-H168. / Process Biochem 2013,48(2):351-57. CrossRef
    70. Zhang Y, Gei?en SU: Elimination of carbamazepine in a non-sterile fungal bioreactor. / Bioresour Technol 2012, 112:221-27. CrossRef
  • 作者单位:Jonas Margot (5) (5)
    Chloé Bennati-Granier (5) (5)
    Julien Maillard (5)
    Paqui Blánquez (5)
    David A Barry (5)
    Christof Holliger (5)

    5. Unité de Biotechnologie des Champignons Filamenteux, Institut National de le Recherche Agronomique (INRA)/Universités de Provence et de la Méditerranée, Ecole Supérieure des Ingénieurs de Luminy, 163 avenue de Luminy-CP 925, 13288, Cedex 09, Marseille, France
  • ISSN:2191-0855
文摘
Relatively high concentrations of micropollutants in municipal wastewater treatment plant (WWTP) effluents underscore the necessity to develop additional treatment steps prior to discharge of treated wastewater. Microorganisms that produce unspecific oxidative enzymes such as laccases are a potential means to improve biodegradation of these compounds. Four strains of the bacterial genus Streptomyces (S. cyaneus, S. ipomoea, S. griseus and S. psammoticus) and the white-rot fungus Trametes versicolor were studied for their ability to produce active extracellular laccase in biologically treated wastewater with different carbon sources. Among the Streptomyces strains evaluated, only S. cyaneus produced extracellular laccase with sufficient activity to envisage its potential use in WWTPs. Laccase activity produced by T. versicolor was more than 20 times greater, the highest activity being observed with ash branches as the sole carbon source. The laccase preparation of S. cyaneus (abbreviated L Sc ) and commercial laccase from T. versicolor (L Tv ) were further compared in terms of their activity at different pH and temperatures, their stability, their substrate range, and their micropollutant oxidation efficiency. L Sc and L Tv showed highest activities under acidic conditions (around pH?3 to 5), but L Tv was active over wider pH and temperature ranges than L Sc , especially at near-neutral pH and between 10 and 25°C (typical conditions found in WWTPs). L Tv was also less affected by pH inactivation. Both laccase preparations oxidized the three micropollutants tested, bisphenol A, diclofenac and mefenamic acid, with faster degradation kinetics observed for L Tv . Overall, T. versicolor appeared to be the better candidate to remove micropollutants from wastewater in a dedicated post-treatment step.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700