OsOXO4, which mapped to a blast resistance QTL in chromosome 3. These genes have >90% nucleotide and amino acid identity, but they have unique gene structures, conserved motifs, and phylogeny compared to the 70 other members of the cupin superfamily in the Nipponbare genome, which were divided into several classes. In resistant and susceptible Vandana/Moroberekan advanced backcross lines, only OsOXO4 was expressed during rice-em class="a-plus-plus">M. oryzae interactions, and its expression increased earlier in resistant than susceptible lines. The earlier expression of OsOXO4 in resistant lines correlated with a 26-bp promoter insertion containing an additional copy of the bacterial responsive nodulation cis-element. Our results showed that OsOXO1-em class="a-plus-plus">4 are in a separate class of rice cupin genes and supports a role for the promoter variant of OsOXO4 in resistance to M. oryzae." />
Phylogenomic Relationships of Rice Oxalate Oxidases to the Cupin Superfamily and Their Association with Disease Resistance QTL
详细信息    查看全文
  • 作者:Maria Gay C. Carrillo (1)
    Paul H. Goodwin (2)
    Jan E. Leach (3)
    Hei Leung (1)
    Casiana M. Vera Cruz (1)
  • 关键词:Cupins ; Gene family ; Germin ; like proteins ; Magnaporthe oryzae ; Oxalate oxidase ; Rice blast
  • 刊名:Rice
  • 出版年:2009
  • 出版时间:March 2009
  • 年:2009
  • 卷:2
  • 期:1
  • 页码:67-79
  • 全文大小:587KB
  • 参考文献:1. Bailey TL, Gribskov M. Methods and statistics for combining motif match scores. J Comput Biol 1998;5:211-1. href="http://dx.doi.org/10.1089/cmb.1998.5.211">CrossRef
    2. Bateman DF, Beer SV. Simultaneous production and synergitic action of oxalic acid and polygalacturonase during pathogenesis by / Sclerotium rolfsii. Phytopathology 1965;55:204-1.
    3. Bell JN, Ryder TB, Wingate VP, Bailey JA, Lamb CJ. Differential accumulation of plant defense gene transcripts in a compatible and an incompatible plant–pathogen interaction. Mol Cell Biol 1986;6:1615-3.
    4. Berna A, Bernier F. Regulation by biotic and abiotic stress of a wheat germin gene encoding oxalate oxidase, a H2O2-producing enzyme. Plant Mol Biol 1999;39:539-9. href="http://dx.doi.org/10.1023/A:1006123432157">CrossRef
    5. Cannon SB, Mitra A, Baumgarten A, Young ND, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in / Arabidopsis thaliana. BMC Plant Biol 2004;4:10. href="http://dx.doi.org/10.1186/1471-2229-4-10">CrossRef
    6. Carter C, Thornburg RW. Tobacco nectarin I. Purification and characterization as a germin-like, manganese superoxide dismutase implicated in the defensE of floral reproductive tissues. J Biol Chem 2000;275:36726-3. href="http://dx.doi.org/10.1074/jbc.M006461200">CrossRef
    7. Carter C, Thornburg RW. The nectary-specific pattern of expression of the tobacco Nectarin I promoter is regulated by multiple promoter elements. Plant Mol Biol 2003;51:451-. href="http://dx.doi.org/10.1023/A:1022370203570">CrossRef
    8. Carter C, Graham RA, Thornburg RW. / Arabidopsis thaliana contains a large family of germin-like proteins: characterization of cDNA and genomic sequences encoding 12 unique family members. Plant Mol Biol 1998;38:929. href="http://dx.doi.org/10.1023/A:1006038117130">CrossRef
    9. Cessna SG, Sears VE, Dickman MB, Low PS. Oxalic acid, a pathogenicity factor for sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. The Plant Cell 2000;12:2191. href="http://dx.doi.org/10.2307/3871114">CrossRef
    10. Chittoor JM, Leach JE, White FF. Differential induction of a peroxidase gene family during infection of rice by / Xanthomonas oryzae pv. oryzae. Mol Plant Microbe Interact 1997;10:861-1. href="http://dx.doi.org/10.1094/MPMI.1997.10.7.861">CrossRef
    11. Doll J, Hause B, Demchenko K, Pawlowski K, Krajinski F. A member of the germin-like protein family is a highly conserved mycorrhiza-specific induced gene. Plant Cell Physiol 2003;44:1208-4. href="http://dx.doi.org/10.1093/pcp/pcg153">CrossRef
    12. Downie JA, Walker SA. Plant responses to nodulation factors. Current Op Plant Biol 1999;2:483-. href="http://dx.doi.org/10.1016/S1369-5266(99)00018-7">CrossRef
    13. Druka A, Kudrna D, Kannangara CG, von Wettstein D, Kleinhofs A. Physical and genetic mapping of barley (Hordeum vulgare) germin-like cDNAs. Proc Natl Acad Sci U S A 2002;99:850-. href="http://dx.doi.org/10.1073/pnas.022627999">CrossRef
    14. Dunwell J, Gibbings JG, Mahmood T, Naqvi S. Germin and germin-like proteins: evolution, structure, and function. Crit Rev Plant Sci 2008;27:342-5. href="http://dx.doi.org/10.1080/07352680802333938">CrossRef
    15. Dunwell JM, Khuri S, Gane PJ. Microbial relatives of the seed storage proteins of higher plants: conservation of structure and diversification of function during evolution of the cupin superfamily. Microbiol Mol Biol Rev 2000;64:153-9. href="http://dx.doi.org/10.1128/MMBR.64.1.153-179.2000">CrossRef
    16. Dunwell JM, Purvis A, Khuri S. Cupins: the most functionally diverse protein superfamily? Phytochemistry 2004;65:7-7. href="http://dx.doi.org/10.1016/j.phytochem.2003.08.016">CrossRef
    17. Dunwell JM, Culham A, Carter CE, Sosa-Aguirre CR, Goodenough PW. Evolution of functional diversity in the cupin superfamily. Trends Biochem Sci 2001;26:740-. href="http://dx.doi.org/10.1016/S0968-0004(01)01981-8">CrossRef
    18. Elemento O, Gascuel O, Lefranc M-P. Reconstructing the duplication history of tandemly repeated genes. Mol Biol Evol 2002;19:278.
    19. Faris JD, Li WL, Liu DJ, Chen PD, Gill BS. Candidate gene analysis of quantitative disease resistance in wheat. TAG Theor Appl Gen 1999;V98:219.
    20. Federico ML, Iniguez-Luy FL, Skadsen RW, Kaeppler HF. Spatial and temporal divergence of expression in duplicated barley germin-like protein-encoding genes. Genetics 2006;174:179-0. href="http://dx.doi.org/10.1534/genetics.106.058156">CrossRef
    21. Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 1999;151:1531-5.
    22. Friesen TL, Faris JD. Molecular mapping of resistance to / Pyrenophora tritici-repentis race 5 and sensitivity to Ptr ToxB in wheat. TAG Theor Appl Gen 2004;109:464.
    23. Fritz-Laylin LK, Krishnamurthy N, Tor M, Sjolander KV, Jones JD. Phylogenomic analysis of the receptor-like proteins of rice and / Arabidopsis. Plant Physiol 2005;138:611-3. href="http://dx.doi.org/10.1104/pp.104.054452">CrossRef
    24. Gane PJ, Dunwell JM, Warwicker J. Modeling based on the structure of vicilins predicts a histidine cluster in the active site of oxalate oxidase. J Mol Evol 1998;46:488-3. href="http://dx.doi.org/10.1007/PL00006329">CrossRef
    25. Godoy G, Steadman JR, Dickman MB, Dam R. Use of mutants to demonstrate the role of oxalic acid in pathogenicity of / Sclerotinia sclerotiorum on / Phaseolus vulgaris. Physiol Mol Plant Pathol 1990;37:179-1. href="http://dx.doi.org/10.1016/0885-5765(90)90010-U">CrossRef
    26. Gu K, Yang B, Tian D, Wu L, Wang D, Sreekala C, et al. R gene expression induced by a type-III effector triggers disease resistance in rice. Nature 2005;435:1122-. href="http://dx.doi.org/10.1038/nature03630">CrossRef
    27. Gucciardo S, Wisniewski JP, Brewin NJ, Bornemann S. A germin-like protein with superoxide dismutase activity in pea nodules with high protein sequence identity to a putative rhicadhesin receptor. J Exp Bot 2007;58:1161-1. href="http://dx.doi.org/10.1093/jxb/erl282">CrossRef
    28. Guimaraes RL, Stotz HU. Oxalate production by / Sclerotinia sclerotiorum deregulates guard cells during infection. Plant Physiol 2004;136:3703-1. href="http://dx.doi.org/10.1104/pp.104.049650">CrossRef
    29. Hu X, Bidney DL, Yalpani N, Duvick JP, Crasta O, Folkerts O, et al. Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiol 2003;133:170. href="http://dx.doi.org/10.1104/pp.103.024026">CrossRef
    30. Hurkman WJ, Tanaka CK. Germin gene expression is induced in wheat leaves by powdery mildew infection. Plant Physiol 1996;111:735-.
    31. IRGSP. The map-based sequence of the rice genome. Nature 2005;436:793-00. href="http://dx.doi.org/10.1038/nature03895">CrossRef
    32. Khuri S, Bakker FT, Dunwell JM. Phylogeny, function, and evolution of the cupins, a structurally conserved, functionally diverse superfamily of proteins. Mol Biol Evol 2001;18:593-05.
    33. Kozik A, Kochetkova E, Michelmore R. GenomePixelizer—a visualization program for comparative genomics within and between species. Bioinformatics 2002;18:335. href="http://dx.doi.org/10.1093/bioinformatics/18.2.335">CrossRef
    34. Lamb C, Dixon RA. The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 1997;48:251-5. href="http://dx.doi.org/10.1146/annurev.arplant.48.1.251">CrossRef
    35. Lane BG. Oxalate, germin, and the extracellular matrix of higher plants. Faseb J 1994;8:294-01.
    36. Lane BG, Dunwell JM, Ray JA, Schmitt MR, Cuming AC. Germin, a protein marker of early plant development, is an oxalate oxidase. J Biol Chem 1993;268:12239-2.
    37. Liu B, Zhang S, Zhu X, Yang Q, Wu S, Mei M, et al. Candidate defense genes as predictors of quantitative blast resistance in rice. Mol Plant Microbe Interact 2004;17:1146-2. href="http://dx.doi.org/10.1094/MPMI.2004.17.10.1146">CrossRef
    38. Livingstone DM, Hampton JL, Phipps PM, Grabau EA. Enhancing resistance to / Sclerotinia minor in peanut by expressing a barley oxalate oxidase gene. Plant Physiol 2005;137:1354-2. href="http://dx.doi.org/10.1104/pp.104.057232">CrossRef
    39. Lynch M, O’Hely M, Walsh B, Force A. The probability of preservation of a newly arisen gene duplicate. Genetics 2001;159:1789-04.
    40. Manosalva PM, Davidson RM, Liu B, Zhu X, Hulbert SH, Leung H, Leach JE. A germin-like protein gene family functions as a complex QTL conferring broad-spectrum disease resistance in rice. Plant Physiol 2008;149:286-6. href="http://dx.doi.org/10.1104/pp.108.128348">CrossRef
    41. Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, et al. CDD: a conserved domain database for protein classification. Nucleic Acids Res 2005;33:D192-96. href="http://dx.doi.org/10.1093/nar/gki069">CrossRef
    42. Membre N, Berna A, Neutelings G, David A, David H, Staiger D, et al. cDNA sequence, genomic organization and differential expression of three / Arabidopsis genes for germin/oxalate oxidase-like proteins. Plant Mol Biol 1997;35:459-9. href="http://dx.doi.org/10.1023/A:1005833028582">CrossRef
    43. Membre N, Bernier F, Staiger D, Berna A. / Arabidopsis thaliana germin-like proteins: common and specific features point to a variety of functions. Planta 2000;211:345-4. href="http://dx.doi.org/10.1007/s004250000277">CrossRef
    44. Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW. Genome-wide analysis of NBS-LRR-encoding genes in / Arabidopsis. Plant Cell 2003;15:809-4. href="http://dx.doi.org/10.1105/tpc.009308">CrossRef
    45. Meyers BC, Tej SS, Vu TH, Haudenschild CD, Agrawal V, Edberg SB, et al. The use of MPSS for whole-genome transcriptional analysis in / Arabidopsis. Genome Res 2004a;14:1641-3. href="http://dx.doi.org/10.1101/gr.2275604">CrossRef
    46. Meyers BC, Vu TH, Tej SS, Ghazal H, Matvienko M, Agrawal V, et al. Analysis of the transcriptional complexity of / Arabidopsis thaliana by massively parallel signature sequencing. Nat Biotechnol 2004b;22:1006-1. href="http://dx.doi.org/10.1038/nbt992">CrossRef
    47. Mondragon-Palomino M, Gaut BS. Gene conversion and the evolution of three leucine-rich repeat gene families in / Arabidopsis thaliana. Mol Biol Evol 2005;22:2444. href="http://dx.doi.org/10.1093/molbev/msi241">CrossRef
    48. Monosi B, Wisser RJ, Pennill L, Hulbert SH. Full-genome analysis of resistance gene homologues in rice. Theor Appl Genet 2004;109:1434-7. href="http://dx.doi.org/10.1007/s00122-004-1758-x">CrossRef
    49. Nakano M, Nobuta K, Vemaraju K, Tej SS, Skogen JW, Meyers BC. Plant MPSS databases: signature-based transcriptional resources for analyses of mRNA and small RNA. Nucl Acids Res 2006;34:D731-35. href="http://dx.doi.org/10.1093/nar/gkj077">CrossRef
    50. Ohno S. Evolution by gene duplication. New York: Springer; 1970.
    51. Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, et al. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 2006;172:1901-4. href="http://dx.doi.org/10.1534/genetics.105.044891">CrossRef
    52. Quackenbush J, Cho J, Lee D, Liang F, Holt I, Karamycheva S, et al. The TIGR gene indices: analysis of gene transcript sequences in highly sampled eukaryotic species. Nucleic Acids Res 2001;29:159. href="http://dx.doi.org/10.1093/nar/29.1.159">CrossRef
    53. Ramalingam J, Vera Cruz CM, Kukreja K, Chittoor JM, Wu JL, Lee SW, et al. Candidate defense genes from rice, barley, and maize and their association with qualitative and quantitative resistance in rice. Mol Plant Microbe Interact 2003;16:14-4. href="http://dx.doi.org/10.1094/MPMI.2003.16.1.14">CrossRef
    54. Richly E, Kurth J, Leister D. Mode of amplification and reorganization of resistance genes during recent / Arabidopsis thaliana evolution. Mol Biol Evol 2002;19:76-4.
    55. Rodriguez-Lopez M, Baroja-Fernandez E, Zandueta-Criado A, Moreno-Bruna B, Munoz FJ, Akazawa T, et al. Two isoforms of a nucleotide-sugar pyrophosphatase/phosphodiesterase from barley leaves ( / Hordeum vulgare L.) are distinct oligomers of HvGLP1, a germin-like protein. FEBS Lett 2001;490:44-. href="http://dx.doi.org/10.1016/S0014-5793(01)02135-4">CrossRef
    56. Roth C, Rastogi S, Arvestad L, Dittmar K, Light S, Ekman D, Liberles DA. Evolution after gene duplication: models, mechanisms, sequences, systems, and organisms. J Exp Zoolog B Mol Dev Evol. 2006.
    57. Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 2000;132:365-6.
    58. Schneider M, Tognolli M, Bairoch A. The Swiss-Prot protein knowledgebase and ExPASy: providing the plant community with high quality proteomic data and tools. Plant Physiol Biochem 2004;42:1013-1. href="http://dx.doi.org/10.1016/j.plaphy.2004.10.009">CrossRef
    59. Schweizer P, Christoffel A, Dudler R. Transient expression of members of the germin-like gene family in epidermal cells of wheat confers disease resistance. Plant J 1999;20:541-2. href="http://dx.doi.org/10.1046/j.1365-313X.1999.00624.x">CrossRef
    60. Steiner-Lange S, Fischer A, Boettcher A, Rouhara I, Liedgens H, Schmelzer E, et al. Differential defense reactions in leaf tissues of barley in response to infection by / Rhynchosporium secalis and to treatment with a fungal avirulence gene product. Mol Plant Microbe Interact 2003;16:893-02. href="http://dx.doi.org/10.1094/MPMI.2003.16.10.893">CrossRef
    61. Tenhaken R, Levine A, Brisson LF, Dixon RA, Lamb C. Function of the oxidative burst in hypersensitive disease resistance. Proc Natl Acad Sci U S A 1995;92:4158-3. href="http://dx.doi.org/10.1073/pnas.92.10.4158">CrossRef
    62. Thompson C, Dunwell JM, Johnstone CE, Lay V, Ray J, Schmitt M, et al. Degradation of oxalic acid by transgenic oilseed rape plants expressing oxalate oxidase. Euphytica 1955;85:169. href="http://dx.doi.org/10.1007/BF00023945">CrossRef
    63. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876-2. href="http://dx.doi.org/10.1093/nar/25.24.4876">CrossRef
    64. van Kan JAL. Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends in Plant Science 2006;11:247-3. href="http://dx.doi.org/10.1016/j.tplants.2006.03.005">CrossRef
    65. Vieweg MF, Fruhling M, Quandt HJ, Heim U, Baumlein H, Puhler A, et al. The promoter of the / Vicia faba L. leghemoglobin gene VfLb29 is specifically activated in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots from different legume and nonlegume plants. Mol Plant-Microbe Interact 2004;17:62-. href="http://dx.doi.org/10.1094/MPMI.2004.17.1.62">CrossRef
    66. Wang GL, Mackill DJ, Bonman JM, McCouch SR, Champoux MC, Nelson RJ. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics 1994;136:1421-4.
    67. Wei Y, Zhang Z, Andersen CH, Schmelzer E, Gregersen PL, Collinge DB, et al. An epidermis/papilla-specific oxalate oxidase-like protein in the defence response of barley attacked by the powdery mildew fungus. Plant Mol Biol 1998;36:101-2. href="http://dx.doi.org/10.1023/A:1005955119326">CrossRef
    68. Wojtaszek P. Oxidative burst: an early plant response to pathogen infection. Biochem J 1997;322(Pt 3):681-2.
    69. Wolfe KH, Gouy M, Yang YW, Sharp PM, Li WH. Date of the monocot–dicot divergence estimated from chloroplast DNA sequence data. Proc Nat Acad Sci U S A 1989;86:6201-. href="http://dx.doi.org/10.1073/pnas.86.16.6201">CrossRef
    70. Wu JL, Sinha PK, Variar M, Zheng KL, Leach JE, Courtois B, et al. Association between molecular markers and blast resistance in an advanced backcross population of rice. Theor Appl Genet 2004;108:1024-2. href="http://dx.doi.org/10.1007/s00122-003-1528-1">CrossRef
    71. Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 1997;13:555-.
    72. Yang Z, Nielsen R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 2000;17:32.
    73. Yang Z, Nielsen R, Hasegawa M. Models of amino acid substitution and applications to mitochondrial protein evolution. Mol Biol Evol 1998;15:1600.
    74. Yuan Q, Ouyang S, Wang A, Zhu W, Maiti R, Lin H, et al. The institute for genomic research Osa1 rice genome annotation database. Plant Physiol 2005;138:18-6. href="http://dx.doi.org/10.1104/pp.104.059063">CrossRef
    75. Zhang Z, Collinge DB, Thordal-Christensen H. Germin-like oxalate oxidase, a H2O2-producing enzyme, accumulates in barley attacked by the powdery mildew fungus. Plant J 1995;8:139. href="http://dx.doi.org/10.1046/j.1365-313X.1995.08010139.x">CrossRef
    76. Zhou F, Zhang Z, Gregersen PL, Mikkelsen JD, de Neergaard E, Collinge DB, Thordal-Christensen H. Molecular characterization of the oxalate oxidase involved in the response of barley to the powdery mildew fungus. Plant Physiol 1998;117:33-1. href="http://dx.doi.org/10.1104/pp.117.1.33">CrossRef
  • 作者单位:Maria Gay C. Carrillo (1)
    Paul H. Goodwin (2)
    Jan E. Leach (3)
    Hei Leung (1)
    Casiana M. Vera Cruz (1)

    1. Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines
    2. Department of Environmental Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
    3. Bioagricultural Sciences and Pest Management Department and Plant Molecular Biology Program, Colorado State University, Fort Collins, CO, 80523-1177, USA
文摘
Rice oxalate oxidase genes (OXO) may play a role in resistance to Magnaporthe oryzae. Genome analyses showed four tandemly duplicated OXO genes, OsOXO1-em class="a-plus-plus">OsOXO4, which mapped to a blast resistance QTL in chromosome 3. These genes have >90% nucleotide and amino acid identity, but they have unique gene structures, conserved motifs, and phylogeny compared to the 70 other members of the cupin superfamily in the Nipponbare genome, which were divided into several classes. In resistant and susceptible Vandana/Moroberekan advanced backcross lines, only OsOXO4 was expressed during rice-em class="a-plus-plus">M. oryzae interactions, and its expression increased earlier in resistant than susceptible lines. The earlier expression of OsOXO4 in resistant lines correlated with a 26-bp promoter insertion containing an additional copy of the bacterial responsive nodulation cis-element. Our results showed that OsOXO1-em class="a-plus-plus">4 are in a separate class of rice cupin genes and supports a role for the promoter variant of OsOXO4 in resistance to M. oryzae.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700