ATP7B Variants as Modulators of Copper Dyshomeostasis in Alzheimer’s Disease
详细信息    查看全文
  • 作者:Rosanna Squitti (1) (2)
    Renato Polimanti (3)
    Mariacristina Siotto (2) (4)
    Serena Bucossi (1) (2)
    Mariacarla Ventriglia (1) (2)
    Stefania Mariani (1) (2)
    Fabrizio Vernieri (2)
    Federica Scrascia (2)
    Laura Trotta (2)
    Paolo Maria Rossini (5) (6)
  • 关键词:Alzheimer’s disease ; Copper ; Ceruloplasmin ; ATP7B ; Wilson’s disease
  • 刊名:NeuroMolecular Medicine
  • 出版年:2013
  • 出版时间:September 2013
  • 年:2013
  • 卷:15
  • 期:3
  • 页码:515-522
  • 全文大小:293KB
  • 参考文献:1. Brewer, G. J. (2009). Zinc and tetrathiomolybdate for the treatment of Wilson’s disease and the potential efficacy of anticopper therapy in a wide variety of diseases. / Metallomics, / 1(3), 199-06. CrossRef
    2. Bucossi, S., Mariani, S., Ventriglia, M., Polimanti, R., Gennarelli, M., Bonvicini, C., et al. (2011a). Association between the c. 2495 A>G ATP7B polymorphism and sporadic Alzheimer’s disease. / International Journal of Alzheimer’s Disease, / 2011, 973692.
    3. Bucossi, S., Polimanti, R., Mariani, S., Ventriglia, M., Bonvicini, C., Migliore, S., et al. (2012). Association of K832R and R952?K SNPs of Wilson’s disease gene with Alzheimer’s disease. / Journal of Alzheimer’s Disease, / 29(4), 913-19.
    4. Bucossi, S., Ventriglia, M., Panetta, V., Salustri, C., Pasqualetti, P., Mariani, S., et al. (2011b). Copper in Alzheimer’s disease: A meta-analysis of serum, plasma, and cerebrospinal fluid studies. / Journal of Alzheimer’s Disease, / 24(1), 175-85.
    5. Bush, A. I., & Tanzi, R. E. (2008). Therapeutics for Alzheimer’s disease based on the metal hypothesis. / Neurotherapeutics, / 5(3), 421-32. CrossRef
    6. Capo, C. R., Arciello, M., Squitti, R., Cassetta, E., Rossini, P. M., Calabrese, L., et al. (2008). Features of ceruloplasmin in the cerebrospinal fluid of Alzheimer’s disease patients. / BioMetals, / 21(3), 367-72. CrossRef
    7. Cherny, R. A., Legg, J. T., McLean, C. A., Fairlie, D. P., Huang, X., Atwood, C. S., et al. (1999). Aqueous dissolution of Alzheimer’s disease Abeta amyloid deposits by biometal depletion. / Journal of Biological Chemistry, / 274(33), 23223-3228. CrossRef
    8. Dubois, B., Feldman, H. H., Jacova, C., Dekosky, S. T., Barberger-Gateau, P., Cummings, J., et al. (2007). Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS-ADRDA criteria. / Lancet Neurology, / 6(8), 734-46. CrossRef
    9. Excoffier, L., Laval, G., & Balding, D. (2003). Gametic phase estimation over large genomic regions using an adaptive window approach. / Human Genomics, / 1(1), 7-9. CrossRef
    10. Faller, P. (2011). Copper in Alzheimer disease: Too much, too little, or misplaced? / Free Radical Biology & Medicine. doi:10.1016/j.freeradbiomed.2011.11.005 .
    11. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state- A practical method for grading the cognitive state of patients for the clinician. / Journal of Psychiatric Research, / 12(3), 189-98. CrossRef
    12. Frautschy, S. A., & Cole, G. M. (2010). Why pleiotropic interventions are needed for Alzheimer’s disease. / Molecular Neurobiology, / 41(2-), 392-09. CrossRef
    13. Gaggelli, E., Kozlowski, H., Valensin, D., & Valensin, G. (2006). Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). / Chemical Reviews, / 106(6), 1995-044. CrossRef
    14. Giambattistelli, F., Bucossi, S., Salustri, C., Panetta, V., Mariani, S., Siotto, M., et al. (2011). Effects of hemochromatosis and transferrin gene mutations on iron dyshomeostasis, liver dysfunction and on the risk of Alzheimer’s disease. / Neurobiology of Aging. doi:10.1016/j.neurobiolaging.2011.03.005 .
    15. Gupta, A., Maulik, M., Nasipuri, P., Chattopadhyay, I., Das, S. K., Gangopadhyay, P. K., et al. (2007). Molecular diagnosis of Wilson disease using prevalent mutations and informative single-nucleotide polymorphism markers. / Clinical Chemistry, / 53(9), 1601-608. CrossRef
    16. Halliday, G. M., & McCann, H. (2010). The progression of pathology in Parkinson’s disease [Review]. / Annals of the New York Academy of Sciences, / 1184, 188-95. CrossRef
    17. Hardy, J. A., & Higgins, G. A. (1992). Alzheimer’s disease: The amyloid cascade hypothesis. / Science, / 256(5054), 184-85. CrossRef
    18. Hixson, J. E., & Vernier, D. T. (1990). Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. / Journal of Lipid Research, / 31(3), 545-48.
    19. Hochstrasser, H., Tomiuk, J., Walter, U., Behnke, S., Spiegel, J., Kruger, R., et al. (2005). Functional relevance of ceruloplasmin mutations in Parkinson’s disease. / FASEB Journal, / 19(13), 1851-853.
    20. Hoogenraad, T. (2001). / Wilson’s disease. Amsterdam: Intermed Medical Publishers.
    21. James, S. A., Volitakis, I., Adlard, P. A., Duce, J. A., Masters, C. L., Cherny, R. A., et al. (2012). Elevated labile Cu is associated with oxidative pathology in Alzheimer disease. / Free Radical Biology & Medicine, / 52(2), 298-02. CrossRef
    22. Jin, L., Wu, W. H., Li, Q. Y., Zhao, Y. F., & Li, Y. M. (2011). Copper inducing Abeta42 rather than Abeta40 nanoscale oligomer formation is the key process for Abeta neurotoxicity. / Nanoscale, / 3(11), 4746-751. CrossRef
    23. Kennerson, M. L., Nicholson, G. A., Kaler, S. G., Kowalski, B., Mercer, J. F., Tang, J., et al. (2010). Missense mutations in the copper transporter gene ATP7A cause X-linked distal hereditary motor neuropathy. / American Journal of Human Genetics, / 86(3), 343-52. CrossRef
    24. Koedam, E. L., Lauffer, V., van der Vlies, A. E., van der Flier, W. M., Scheltens, P., & Pijnenburg, Y. A. (2010). Early-versus late-onset Alzheimer’s disease: More than age alone [Research Support, Non-U.S. Gov’t]. / Journal of Alzheimer’s Disease, / 19(4), 1401-408.
    25. Lam, P. K., Kritz-Silverstein, D., Barrett Connor, E., Milne, D., Nielsen, F., Gamst, A., et al. (2008). Plasma trace elements and cognitive function in older men and women: The Rancho Bernardo study. / The Journal of Nutrition Health Aging, / 12(1), 22-7. CrossRef
    26. Loef, M., & Walach, H. (2012). Copper and iron in Alzheimer’s disease: A systematic review and its dietary implications. / British Journal of Nutrition, / 107(1), 7-9. CrossRef
    27. McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. / Neurology, / 34(7), 939-44. CrossRef
    28. Mold, M., Ouro-Gnao, L., Wieckowski, B. M., & Exley, C. (2013). Copper prevents amyloid-beta(1-42) from forming amyloid fibrils under near-physiological conditions in vitro [Research Support, Non-U.S. Gov’t]. / Science Report, 3, 1256.
    29. Moller, L. B., Tumer, Z., Lund, C., Petersen, C., Cole, T., Hanusch, R., et al. (2000). Similar splice-site mutations of the ATP7A gene lead to different phenotypes: Classical Menkes disease or occipital horn syndrome. / American Journal of Human Genetics, / 66(4), 1211-220. CrossRef
    30. Morris, M. C., Evans, D. A., Tangney, C. C., Bienias, J. L., Schneider, J. A., Wilson, R. S., et al. (2006). Dietary copper and high saturated and trans fat intakes associated with cognitive decline. / Archives of Neurology, / 63(8), 1085-088. CrossRef
    31. Multhaup, G., Schlicksupp, A., Hesse, L., Beher, D., Ruppert, T., Masters, C. L., et al. (1996). The amyloid precursor protein of Alzheimer’s disease in the reduction of copper(II) to copper(I). / Science, / 271(5254), 1406-409. CrossRef
    32. Nandar, W., & Connor, J. R. (2011). HFE gene variants affect iron in the brain. / Journal of Nutrition, / 141(4), 729S-39S. CrossRef
    33. Rothman, K. J. (1986). / Modern epidemiology (1st ed.). Boston: Little, Brown.
    34. Scalfari, A., Neuhaus, A., Daumer, M., Ebers, G. C., & Muraro, P. A. (2011). Age and disability accumulation in multiple sclerosis. / Neurology, / 77(13), 1246-252. CrossRef
    35. Scheinberg, I. H., & Sternlieb, I. (1965). Wilson’s disease. / Annual Review of Medicine, / 16, 119-34. CrossRef
    36. Schrag, M., Mueller, C., Oyoyo, U., Smith, M. A., & Kirsch, W. M. (2011). Iron, zinc and copper in the Alzheimer’s disease brain: A quantitative meta-analysis. Some insight on the influence of citation bias on scientific opinion. / Progress in Neurobiology, / 94(3), 296-06. CrossRef
    37. Sole, X., Guino, E., Valls, J., Iniesta, R., & Moreno, V. (2006). SNPStats: A web tool for the analysis of association studies. / Bioinformatics, / 22(15), 1928-929. CrossRef
    38. Squitti, R., Barbati, G., Rossi, L., Ventriglia, M., Dal Forno, G., Cesaretti, S., et al. (2006). Excess of nonceruloplasmin serum copper in AD correlates with MMSE, CSF [beta]-amyloid, and h-tau. / Neurology, / 67(1), 76-2. CrossRef
    39. Squitti, R., Ghidoni, R., Scrascia, F., Benussi, L., Panetta, V., Pasqualetti, P., et al. (2011). Free copper distinguishes mild cognitive impairment subjects from healthy elderly individuals. / Journal of Alzheimer’s Disease, / 23(2), 239-48.
    40. Squitti, R., Pasqualetti, P., Dal Forno, G., Moffa, F., Cassetta, E., Lupoi, D., et al. (2005). Excess of serum copper not related to ceruloplasmin in Alzheimer disease. / Neurology, / 64(6), 1040-046. CrossRef
    41. Squitti, R., & Polimanti, R. (2012). Copper hypothesis in the missing hereditability of sporadic Alzheimer’s disease: ATP7B gene as potential harbor of rare variants. / Journal of Alzheimer’s Disease, / 29(3), 493-01.
    42. Squitti, R., Polimanti, R., Bucossi, S., Ventriglia, M., Mariani, S., Manfellotto, D., et al. (2013). Linkage Disequilibrium and haplotype analysis of ATP7B gene in Alzheimer’s disease. / Rejuvenation Research, 16(1), 3-0. CrossRef
    43. Squitti, R., & Salustri, C. (2009). Agents complexing copper as a therapeutic strategy for the treatment of Alzheimer’s disease. / Current Alzheimer Research, / 6(6), 476-87. CrossRef
    44. Squitti, R., Ventriglia, M., Barbati, G., Cassetta, E., Ferreri, F., Dal Forno, G., et al. (2007). ‘Free-copper in serum of Alzheimer’s disease patients correlates with markers of liver function. / Journal of Neural Transmission, / 114(12), 1589-594. CrossRef
    45. Ventriglia, M., Bucossi, S., Panetta, V., & Squitti, R. (2012). Copper in Alzheimer’s disease: A meta-analysis of serum, plasma, and cerebrospinal fluid studies. / Journal of Alzheimer’s Disease, / 30(4), 981-84.
    46. Walshe, J. M. (2003). Wilson’s disease: The importance of measuring serum ceruloplasmin non-immunologically. / Annals of Clinical Biochemistry, / 40(Pt 2), 115-21. CrossRef
    47. White, A. R., Multhaup, G., Maher, F., Bellingham, S., Camakaris, J., Zheng, H., et al. (1999). The Alzheimer’s disease amyloid precursor protein modulates copper-induced toxicity and oxidative stress in primary neuronal cultures. / Journal of Neuroscience, / 19(21), 9170-179.
    48. Wolf, P. L. (1982). Ceruloplasmin: Methods and clinical use. / Critical Reviews in Clinical Laboratory Sciences, / 17(3), 229-45. CrossRef
    49. Yang, X. H., Huang, H. C., Chen, L., Xu, W., & Jiang, Z. F. (2009). Coordinating to three histidine residues: Cu(II) promotes oligomeric and fibrillar amyloid-beta peptide to precipitate in a non-beta aggregation manner [Research Support, Non-U.S. Gov’t]. / Journal of Alzheimer’s Disease, / 18(4), 799-10.
    50. Zappasodi, F., Salustri, C., Babiloni, C., Cassetta, E., Del Percio, C., Ercolani, M., et al. (2008). An observational study on the influence of the APOE-epsilon4 allele on the correlation between ‘free-copper toxicosis and EEG activity in Alzheimer disease. / Brain Research, / 1215, 183-89. CrossRef
  • 作者单位:Rosanna Squitti (1) (2)
    Renato Polimanti (3)
    Mariacristina Siotto (2) (4)
    Serena Bucossi (1) (2)
    Mariacarla Ventriglia (1) (2)
    Stefania Mariani (1) (2)
    Fabrizio Vernieri (2)
    Federica Scrascia (2)
    Laura Trotta (2)
    Paolo Maria Rossini (5) (6)

    1. Department of Neuroscience, AFaR-Ospedale Fatebenefratelli Hospital, 00186, Rome, Italy
    2. Department of Neurology, “Campus Bio-Medico-University, Rome, Italy
    3. Department of Biology, “Tor Vergata-University, Rome, Italy
    4. Don Carlo Gnocchi Foundation ONLUS, Milan, Italy
    5. Department of Imaging, Casa di Cura San Raffaele, Cassino, Italy
    6. Institute of Neurology, Catholic University, Rome, Italy
文摘
To understand the role of the key copper-regulating gene, ATP7B, in copper dyshomeostasis associated with Alzheimer’s disease (AD), we analyzed the serum levels of copper, ceruloplasmin and ‘free-(i.e., non-ceruloplasmin bound) copper in 399 patients with AD and 303 elderly healthy controls. We also performed analyses of informative variants of ATP7B. AD patients had higher levels of copper and free copper than controls. Individuals with free copper levels higher than 1.6?μmol/L (the upper value of the normal reference range) were more frequent among cases (p?<?0.001). Among these individuals, those who were carriers of the ATP7B variants accounted for a large proportion of the free copper levels, specifically in the AD group (p?<?0.01). Our results suggest the existence of a ‘copper dysfunction-phenotype of sporadic AD which has a genetic basis. They also suggest that free copper is a risk factor for this disorder, modulating additional pathways leading to the disease cascade.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700