On-line cell lysis of bacteria and its spores using a microfluidic biochip
详细信息    查看全文
  • 作者:Marianna Cíchová (1)
    Miloslava Prok?ová (1)
    Lívia Tóthová (1)
    Hunor Sántha (2)
    Viktor Mayer (2)
  • 关键词:Cell lysis ; Chelex 100 ; Microfluidic biochip ; SYBR Green real ; time PCR ; Waterborne pathogens
  • 刊名:Central European Journal of Biology
  • 出版年:2012
  • 出版时间:April 2012
  • 年:2012
  • 卷:7
  • 期:2
  • 页码:230-240
  • 全文大小:938KB
  • 参考文献:1. Prüss A., Kay D., Fewtrell L., Bartram J., Estimating the burden of disease from water, sanitation, and hygiene at a global level, Environ. Health Perspect, 2002, 110, 5537-542 CrossRef
    2. Khan A.S., Swedlow D.L., Juranek D.D., Precautions against biological and chemical terrorism directed at food and water supplies, Public Health Rep., 2001, 116, 3-4
    3. WHO, Guidelines for drinking-water quality, 3rd ed., Recommendations, Geneva, World Health Organization, 2004
    4. Rompré A., Servais P., Baudart J., De-Roubin M.R., Laurent P., Detection and enumeration of coliforms in drinking water: currenr methods and emerging approaches, J Microbiol. Methods, 2002, 49, 31-4 CrossRef
    5. Alexandrino M., Grohmann E., Szewzyk U., Optimization of PCR-based methods for rapid detection of Campalobacter jejuni, Campylobacter coli and Yersinia enterocolitica serovar 0:3 in wastewater samples, Water Res., 2004, 38, 1340-346 CrossRef
    6. Northrup M.A, Ching M.T, White R.M, Watson R.T., DNA amplification with a microfabricated reaction chamber. In: Proceedings of Transducers-93, the Seventh International Conference on Solid-State Sensors and Actuators (7-0 June, 1993, Yokohama, Japan), New York Institute of Electrical and Electronic Engineers, 1993, 924-26
    7. Fan Z.H, Mangru S., Granzow R., Heaney P., Ho W., Dong, Q. et al., Dynamic DNA hybridization on a chip using paramagnetic beads, Anal Chem, 1999, 71, 4851-859 CrossRef
    8. Kwakye S., Goral V.N., Baeumner A.J., Electrochemical microfluidic biosensor for nucleic acid detection with integrated minipotentiostat, Biosens. Bioelectron., 2006, 21, 2217-223 CrossRef
    9. Soumet C., Ermel G., Fach P., Colin P., Evaluation of different DNA extraction procedures for the detection of Salmonella from chicken products by polymerase chain reaction, Lett. Appl. Microbiol., 1994, 19, 294-98 CrossRef
    10. Goldenberger D., Perschil I., Ritzler, M. Altwegg, M., A simple ‘universal-DNA extraction procedure using SDS and proteinase K is compatible with direct DNA amplification PCR, Genome Res., 1995, 4, 368-70 CrossRef
    11. Taylor M.T., Belgrader P., Furman B.J., Pourahmadi F., Kovacs G.T.A., Northrup, M.A., Lysing bacterial spores by sonication through a flexible interface in a microfluidic system, Anal. Chem., 2001, 73, 492-96 CrossRef
    12. Keshavaraz-Moore E., Hoare M., Dunnill P., Disruption of Baker’syeast in a high-pressure homogenizer: New evidence on mechanism, Enzyme Microb. Technol., 1990, 12, 764-70 CrossRef
    13. Han F., Wang Y., Sims C.E., Bachman M., Chang R., et al., Fast electrical lysis of cells for capillary electrophoresis, Anal. Chem., 2003, 75, 3688-696 CrossRef
    14. Gao J., Yin X.F., Fang Z.L., Integration of single cell injections, cell lysis, separation and detectionof intracellular constituents on a microfluidic chip, Lab Chip, 2004, 4, 24-2 CrossRef
    15. Xing Ch., Da-fu C., Changchun L., On-line cell lysis and DNA extraction on a microfluidic biochip fabricated by microelectromechanical system technology, Electrophoresis, 2008, 29, 1844-851 CrossRef
    16. Sethu P., Anahtar M., Moldawer L.L., Continuous row microfluidic device for rapid erythrocyte lysis, Anal. Chem., 2004, 76, 6247-253 CrossRef
    17. Mahalanabis M., Al-Muayad H., Kulinski D., Altman D., Klapperich C.M., Cell lysis and DNA extraction of gram-positive and gram-negative bacteria from whole blood in a disposable microfluidic chip, Lab Chip, 2009, 9, 2811-817 CrossRef
    18. Lee J.G, Cheong K.H., Huh N., Kim S., Choi J.W., Ko, C.H., Microchip-based one step DNA extraction and real-time PCR in one chamber for rapid pathogen identification, Lab Chip, 2006, 5, 886-95 CrossRef
    19. Rawsthorne H., Dock C.N., Jaykus L.A., PCR-based method using propidium monoazide to distinguish viable from nonviable Bacillus subtilis spores, Appl. Environ. Microbiol., 2009, 75, 2936-939 CrossRef
    20. Werners K., Heuvelman C.J., Chakraborty T., Notermans S.H.W., Use of the polymerase chain reaction for direct detection of Listeria monocytogenes in soft cheese, J. Appl. Bacteriol., 1991, 70, 121-26 CrossRef
    21. Khan I.U., Yaday J.S., Development of a singletube, cell lysis-based, genus-specific PCR method for rapid identification of mycobacteria, optimization of cell lysis, PCR primers and conditions and restriction pattern analysis, J. Clin. Microbiol., 2004, 42, 453-57 CrossRef
    22. Suenaga E., Nakamura H., Evaluation of three methods for effective extraction of DNA from human hair, J. Chromatogr. B., 2005, 820, 137-41 CrossRef
    23. Drahovska H., Turna J., Piknova E., Kuchta T., Szitasova, I. et al., Detection of Salmonella by polymerase chain reaction targeted to fimC gene, Biologia, 2001, 56, 611-16
    24. Ke D., Picard F.J., Martineau F., Ménard C.H., Roy P.H., Development of a PCR assay for rapid detection of enterococci, J. Clin. Microbiol., 1999, 37, 3497-503
    25. Aldous W.K., Pounder J.I., Cloud J.L., Woods G.L., Comparison of six methods of extracting Mycobaterium tuberculosis DNA from processed sputum for testing by quantitative real-time PCR, J.Clin. Microbiol., 2005, 43, 2471-473 CrossRef
    26. Gonzalez Garcia L.A., Rodrigo Tapia J.P., Sanchez L.P., Ramos S., Suarez N.C., DNA extraction using chelex resin for the oncogenic amplification analysis in head and neck tumours, Acta Otorinolaringol. Esp., 2004, 55, 139-44
    27. Aranishi F., Okimoto T., A simple and reliable method for DNA extraction from bivalve mantle, J. Appl. Genet., 2006, 47, 251-54 CrossRef
    28. Desloire S., Valiente Moro, C., Chauve, C., Zenner, L., Comparison of four methods of extracting DNA from D. Gallinae, Vet. Res., 2006, 25, 725-32 CrossRef
    29. Burns M.A., Johnson B.N., Brahmasandra S.N., Handique K., An integrated nanoliter analysis device, Science, 1998, 282, 484-87 CrossRef
    30. Karle M., Miwa J., Czilwik G., Auw?rter V., Roth G., Zengerle R,. Von Stetten F., Continuous microfluidic DNA extraction using phase-transfer magnetophoresis, Lab Chip, 2010, 10, 3284-290 CrossRef
    31. Carlo D.D, Jeong K.H, Lee L.P, Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation, Lab Chip, 2003, 3, 287-91 CrossRef
    32. Waters L.C., Jacobson S.C., Kroutchinina N., Khandurina J., Foote R.S., Ramsey J.M., Multiplex sample PCR amplification and electrophoretic analysis on a microchip, Anal. Chem, 1998, 70, 5172-176 CrossRef
    33. Lee S.W., Tai I.C., Micro cell lysis device, Sensor. Actuat. A-Phys., 1999, 73, 74-9 CrossRef
    34. LaMontagne M.G., Michel F.C., Jr. Holden P.A., Reddy C.A., Evaluation of extraction and purification methods for obtaining PCRamplifiable DNA from compost for microbial community Analysis, J Microbiol Methods, 2002, 49, 255-64 CrossRef
  • 作者单位:Marianna Cíchová (1)
    Miloslava Prok?ová (1)
    Lívia Tóthová (1)
    Hunor Sántha (2)
    Viktor Mayer (2)

    1. Water Research Institute, National Water Reference Laboratory in Slovakia, 812 49, Bratislava, Slovak Republic
    2. Department of Electronics Technology, Budapest University of Technology and Economics, H-1111, Budapest, Hungary
  • ISSN:1644-3632
文摘
Optimal detection of pathogens by molecular methods in water samples depends on the ability to extract DNA rapidly and efficiently. In this study, an innovative method was developed using a microfluidic biochip, produced by microelectrochemical system technology, and capable of performing online cell lysis and DNA extraction during a continuous flow process. On-chip cell lysis based on chemical/physical methods was performed by employing a sufficient blend of water with the lysing buffer. The efficiency of lysis with microfluidic biochip was compared with thermal lysis in Eppendorf tubes and with two commercial DNA extraction kits: Power Water DNA isolation kit and ForensicGEM Saliva isolation kit in parallel tests. Two lysing buffers containing 1% Triton X-100 or 5% Chelex were assessed for their lysis effectiveness on a microfluidic biochip. SYBR Green real-time PCR analysis revealed that cell lysis on a microfluidic biochip using 5% Chelex buffer provided better or comparable recovery of DNA than commercial isolation kits. The system yielded better results for Gram-positive bacteria than for Gram-negative bacteria and spores of Gram-positive bacteria, within the limits of detection at 103 CFU/ml. During the continuous flow process in the system, rapid cells lysis with PCR-amplifiable genomic DNA were achieved within 20 minutes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700