DNA damage and repair in Fuchs endothelial corneal dystrophy
详细信息    查看全文
  • 作者:Piotr Czarny (1)
    Ewelina Kasprzak (1)
    Mariusz Wielgorski (2)
    Monika Udziela (2)
    Beata Markiewicz (1)
    Janusz Blasiak (1)
    Jerzy Szaflik (2)
    Jacek P. Szaflik (2)
  • 关键词:Fuchs endothelial corneal dystrophy ; FECD ; Oxidative stress ; DNA damage ; DNA repair
  • 刊名:Molecular Biology Reports
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:40
  • 期:4
  • 页码:2977-2983
  • 全文大小:251KB
  • 参考文献:1. Corneal dystrophy, Fuchs endothelial, 1; FECD1. Online-Mendelian-Inheritance-in-Man (OMIM) [database online]. Updated 2/9/2012. Available at: http://omim.org/entry/136800. Accessed 2/4/2012
    2. Fuchs E (1902) On keratitis, being the Bowman lecture. Trans Ophthalmol Soc UK 22:15-4
    3. Krachmer JH, Purcell JJ Jr, Young CW, Bucher KD (1978) Corneal endothelial dystrophy: a study of 64 families. Arch Ophthalmol 96:2036-039 CrossRef
    4. Darlington JK, Adrean SD, Schwab IR (2006) Trends of penetrating keratoplasty in the United States from 1980 to 2004. Ophthalmology 113:2171-175 CrossRef
    5. Eye Bank Association of America (2009) Statistical report. Eye Bank Association of America, Washington, DC
    6. Baratz KH, Tosakulwong N, Ryu E, Brown WL, Branham K, Chen W, Tran KD, Schmid-Kubista KE, Heckenlively JR, Swaroop A, Abecasis G, Bailey KR, Edwards AO (2010) E2- protein and Fuchs’s corneal dystrophy. N Engl J Med 363:1016-024 CrossRef
    7. Gottsch JD, Sundin OH, Liu SH, Jun AS, Broman KW, Stark WJ, Vito EC, Narang AK, Thompson JM, Magovern M (2005) Inheritance of a novel COL8A2 mutation defines a distinct early-onset subtype of Fuchs corneal dystrophy. Invest Ophthalmol Vis Sci 46:1934-939 CrossRef
    8. Biswas S, Munier FL, Yardley J, Hart-Holden N, Perveen R, Cousin P, Sutphin JE, Noble B, Batterbury M, Kielty C, Hackett A, Bonshek R, Ridgway A, McLeod D, Sheffield VC, Stone EM, Schorderet DF, Black GC (2001) Missense mutations in COL8A2, the gene encoding the alpha2 chain of type VIII collagen, cause two forms of corneal endothelial dystrophy. Hum Mol Genet 10:2415-423 CrossRef
    9. Aldave AJ, Rayner SA, Salem AK, Yoo GL, Kim BT, Saeedian M, Sonmez B, Yellore VS (2006) No pathogenic mutations identified in the / COL8A1 and / COL8A2 genes in familial Fuchs corneal dystrophy. Invest Ophthalmol Vis Sci 47:3787-790 CrossRef
    10. Waring GO III, Bourne WM, Edelhauser HF, Kenyon KR (1982) The corneal endothelium: normal and pathologic structure and function. Ophthalmology 89:531-90
    11. Hogan MJ, Wood I, Fine M (1974) Fuchs-endothelial dystophy of the cornea. 29th Sanford Gifford memorial lecture. Am J Ophthalmol 78:363-83
    12. Chiou AG, Kaufman SC, Beuerman RW, Ohta T, Soliman H, Kaufman HE (1999) Confocal microscopy in cornea guttata and Fuchs-endothelial dystrophy. Br J Ophthalmol 83:185-89 CrossRef
    13. Li QJ, Ashraf MF, Shen DF, Green WR, Stark WJ, Chan CC, O’Brien TP (2001) The role of apoptosis in the pathogenesis of Fuchs endothelial dystrophy of the cornea. Arch Ophthalmol 119:1597-604 CrossRef
    14. Zaniolo K, Bostan C, Rochette Drouin O, Deschambeault A, Perron MC, Brunette I, Proulx S (2012) Culture of human corneal endothelial cells isolated from corneas with Fuchs endothelial corneal dystrophy. Exp Eye Res 94:22-1 CrossRef
    15. Buddi R, Lin B, Atilano SR, Zorapapel NC, Kenney MC, Brown DJ (2002) Evidence of oxidative stress in human corneal diseases. J Histochem Cytochem 50:341-51 CrossRef
    16. Jurkunas UV, Bitar MS, Funaki T, Azizi B (2010) Evidence of oxidative stress in the pathogenesis of Fuchs endothelial corneal dystrophy. Am J Pathol 177:2278-289 CrossRef
    17. Jurkunas UV, Rawe I, Bitar MS, Zhu C, Harris DL, Colby K, Joyce NC (2008) Decreased expression of peroxiredoxins in Fuchs-endothelial dystrophy. Invest Ophthalmol Vis Sci 49:2956-963 CrossRef
    18. Wang Z, Handa JT, Green WR, Stark WJ, Weinberg RS, Jun AS (2007) Advanced glycation end products and receptors in Fuchs-dystrophy corneas undergoing Descemet’s stripping with endothelial keratoplasty. Ophthalmology 114:1453-460 CrossRef
    19. Szaflik JP (2007) Comparison of in vivo confocal microscopy of human cornea by white light scanning slit and laser scanning systems. Cornea 26:438-45 CrossRef
    20. Weiss JS, M?ller HU, Lisch W, Kinoshita S, Aldave AJ, Belin MW, Kivel? T, Busin M, Munier FL, Seitz B, Sutphin J, Bredrup C, Mannis MJ, Rapuano CJ, Van Rij G, Kim EK, Klintworth GK (2008) The IC3D classification of the corneal dystrophies. Cornea 27:S1–S83
    21. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184-91 CrossRef
    22. Klaude M, Eriksson S, Nygren J, Ahnstr?m G (1996) The comet assay: mechanisms and technical considerations. Mutat Res 12:89-6
    23. Blasiak J, Gloc E, Drzewoski J, Wozniak K, Zadrozny M, Skórski T, Pertynski T (2003) Free radicals scavengers can differentially modulate the genotoxicity of amsacrine in normal and cancer cells. Mutat Res 535:25-4 CrossRef
    24. Blasiak J, Synowiec E, Tarnawska J, Czarny P, Poplawski T, Reiter RJ (2012) Dental methacrylates may exert genotoxic effects via the oxidative induction of DNA double strand breaks and the inhibition of their repair. Mol Biol Rep 39:7487-496 CrossRef
    25. Bjoras M, Luna L, Johnsen B, Hoff E, Haug T, Rognes T, Seeberg E (1997) Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites. EMBO J 16:6314-322 CrossRef
    26. Boiteux S, Radicella J (1999) Base excision repair of 8-hydroxyguanine protects DNA from endogenous oxidative stress. Biochimie 81:59-7 CrossRef
    27. Dizdaroglu M, Laval J, Boiteux S (1993) Substrate specificity of the / Escherichia coli endonuclease III: excision of thymine- and cytosine-derived lesions in DNA produced by radiation-generated free radicals. Biochemistry 32:12105-2111 CrossRef
    28. Hatahet Z, Kow YW, Purmal AA, Cunningham RP, Wallace SS (1994) New substrates for old enzymes. 5-Hydroxy-2-deoxycytidine and 5-hydroxy-2-deoxyuridine are substrates for Escherichia coli endonuclease III and formamidopyrimidine DNA N-glycosylase, while 5-hydroxy-2-deoxyuridine is a substrate for uracil DNA N-glycosylase. J Biol Chem 269:18814-8820
    29. Szaflik JP, Janik-Papis K, Synowiec E, Ksiazek D, Zaras M, Wozniak K, Szaflik J, Blasiak J (2009) DNA damage and repair in age-related macular degeneration. Mutat Res 669:169-76 CrossRef
  • 作者单位:Piotr Czarny (1)
    Ewelina Kasprzak (1)
    Mariusz Wielgorski (2)
    Monika Udziela (2)
    Beata Markiewicz (1)
    Janusz Blasiak (1)
    Jerzy Szaflik (2)
    Jacek P. Szaflik (2)

    1. Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
    2. Department of Ophthalmology, Medical University of Warsaw and Samodzielny Publiczny Kliniczny Szpital Okulistyczny, Sierakowskiego 13, 03-710, Warsaw, Poland
  • ISSN:1573-4978
文摘
Fuchs endothelial corneal dystrophy (FECD) is a slowly progressive eye disease leading to blindness, mostly affecting people above 40?years old. The only known method of curing FECD is corneal transplantation. The disease is characterized by the presence of extracellular deposits called “cornea guttata- apoptosis of corneal endothelial cells, dysfunction of Descement’s membrane and corneal edema. Oxidative stress is suggested to play a role in FECD pathogenesis. Reactive oxygen species produced during the stress may damage biomolecules, including DNA. In the present study we evaluated the extent of endogenous DNA damage, including oxidatively modified DNA bases, and damage induced by hydrogen peroxide as well as the kinetics of DNA repair in peripheral blood mononuclear cells of 50 patients with FECD and 43 age-matched controls without visual disturbances. To quantify DNA damage and repair we used the alkaline comet assay technique with the enzymes recognizing oxidative DNA damage, hOGG1 and EndoIII. We did not observe differences in the extent of endogenous and hydrogen peroxide-induced DNA damage between FECD patients and controls. However, we found a lower efficacy of DNA repair in FECD patients as compared with control individuals. The results obtained suggest that the lowering of the DNA repair capacity may be one of the mechanisms underlying the role of oxidative stress in the FECD pathology.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700