Phytomanagement of Cd-contaminated soils using maize (Zea mays L.) assisted by plant growth-promoting rhizobacteria
详细信息    查看全文
  • 作者:Helena Moreira (1)
    Ana P. G. C. Marques (1)
    Albina R. Franco (1)
    António O. S. S. Rangel (1)
    Paula M. L. Castro (1)
  • 关键词:Zea mays ; Soil ; PGPR ; Phytomanagement ; Cadmium ; Biomass production ; Remediation
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:21
  • 期:16
  • 页码:9742-9753
  • 全文大小:1,008 KB
  • 参考文献:1. An YJ (2004) Soil ecotoxicity assessment using cadmium sensitive plants. Environ Pollut 127:21-6 CrossRef
    2. Babalola OO (2010) Beneficial bacteria of agriculture importance. Biotechnol Lett 32:1559-570 CrossRef
    3. Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil applied chelating agents. Environ Sci Technol 3:860-65 CrossRef
    4. Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 4:198-07 CrossRef
    5. Cui Y, Wang Q (2006) Physiological responses of maize to elemental sulphur and cadmium stress. Plant Soil Environ 52:523-29
    6. De Koe T (1994) / Agrostis castellana and / Agrostis delicatula on heavy metal and arsenic enriched sites in NE Portugal. Sci Total Environ 145:103-09 CrossRef
    7. Dhugga KS (2007) Maize biomass yield and composition for biofuels. Crop Sci 47:2211-227 CrossRef
    8. EUGRIS. Portal for soil and water management in Europe (http://www.eugris.info)
    9. F?ssler E, Robinson BH, Gupta SK, Schulin R (2010) Uptake and allocation of plant nutrients and Cd in maize, sunflower and tobacco growing on contaminated soil and the effect of soil conditioners under field conditions. Nutr Cycl Agroecosyst 87:339-52 CrossRef
    10. F?rstner U (1995) Land contaminations by metals: global scope and magnitude of problem. In: Allen HE, Huang CP, Bailey GW, Bowers ER (eds) Metal speciation and contamination of soil. CRC Press, Boca Raton, pp 1-3
    11. Frosteg?rd ?, Tunlid A, B??th E (1996) Changes in microbial community structure during long term incubation in two soils experimentally contaminated with metals. Soil Biol Biochem 28:55-3 CrossRef
    12. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367-74 CrossRef
    13. Grandlic CJ, Mendez MO, Chorover J, Machado B, Maier RM (2008) Plant growth promoting bacteria for phytostabilisation of mine tailings. Environ Sci Technol 42:2079-084 CrossRef
    14. Gunawardana B, Singhal N, Johnson A (2010) Amendments and their combined application for enhanced copper, cadmium, lead uptake by / Lolium perenne. Plant Soil 329:283-94 CrossRef
    15. Henriques IS, Alves A, Tac?o M, Almeida A, Cunha A, Correia A (2006) Seasonal and spatial variability of free-living bacterial community composition along an estuarine gradient (Ria de Aveiro, Portugal). Estuar Coast Shelf Sci 68:139-48 CrossRef
    16. Houba VJG, van der Lee JJ, Novozamsky I (1995) Soil analysis procedure. Department of Soil Science and Plant Nutrition, Wageningen Agricultural University, Syllabus, Wageningen
    17. Jiang CY, Sheng XF, Qian M, Wang QY (2008) Isolation and characterization of a heavy metal-resistant / Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72:157-64 CrossRef
    18. Juwarkar AA, Singh SK, Mudhoo A (2010) A comprehensive overview of elements in bioremediation. Rev Environ Sci Biotechnol 9:215-88 CrossRef
    19. Kavamura VN, Esposito E (2010) Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol Adv 28:61-9 CrossRef
    20. Khan A (2005) Role of soil microbes in the rhizosphere of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355-64 CrossRef
    21. Khan S, Hesham AL, Qiao M, Rehman S, He JZ (2010) Effects of Cd and Pb on soil microbial community structure and activities. Environ Sci Pollut Res 17:288-96 CrossRef
    22. Kirkham MB (2006) Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, and amendments. Geoderma 137:19-2 CrossRef
    23. Kozdrój J (1995) Microbial responses to single or successive soil contamination with Cd or Cu. Soil Biol Biochem 27:1459-465 CrossRef
    24. Lagriffoul A, Mocquot B, Mench M, Vangronsveld J (1998) Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants ( / Zea mays, L.). Plant Soil 200:241-50 CrossRef
    25. Li K, Ramakrishna W (2011) Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth. J Hazard Mater 189:531-39 CrossRef
    26. Li NY, Li ZA, Zhuang P, Zou B, McBride M (2009) Cadmium uptake from soil maize with intercrops. Water Air Soil Pollut 199:45-6 CrossRef
    27. Lorenz N, Hintemann T, Kramarewa T, Katayama A, Yasuta T, Marschner P, Kandeler E (2006) Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure. Soil Biol Biochem 38:1430-437 CrossRef
    28. Lux A, Martinka M, Vaculik M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21-7 CrossRef
    29. Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248-58 CrossRef
    30. Marques APGC, Rangel AOSS, Castro PML (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39:622-54 CrossRef
    31. Marques APGC, Pires C, Moreira H, Rangel AOSS, Castro PML (2010) Assessment of the plant growth promotion abilities of six bacterial species using / Zea mays as indicator plant. Soil Biol Biochem 42:1229-235 CrossRef
    32. Marques APGC, Moreira H, Franco AR, Rangel AOSS, Castro PML (2013) Inoculating / Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria—effects on phytoremediation strategies. Chemosphere 92:74-3 CrossRef
    33. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37-6 CrossRef
    34. Meers E, Ruttens A, Hopgood M, Lesage E, Tack FM (2005) Potential of / Brassica rapa, / Cannabis sativa, / Helianthus annuus and / Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils. Chemosphere 61:561-72 CrossRef
    35. Meers E, Van Slycken S, Adriaensen K, Ruttens A, Vangronsveld J, Du Laing G, Witters N, Thewys T, Tack FM (2010) The use of bio-energy crops ( / Zea mays) for “phytoattenuation-of heavy metals on moderately contaminated soils: a field experiment. Chemosphere 78:35-1 CrossRef
    36. Mench M, Martin E (1991) Mobilization of cadmium and other metals from two soils by root exudates of / Zea mays L., / Nicotiana tabacum L. and / Nicotiana rustica L. Plant Soil 132:187-96
    37. Miransari M (2011) Soil microbes and plant fertilization. Appl Microbiol Biotechnol 92:875-85 CrossRef
    38. Mleczek M, Rutkowski P, Rissmann I, Kaczmarek Z, Golinski P, Szentner K, Stra?yńska K, Stachowiak A (2010) Biomass productivity and phytoremediation potential of / Salix alba and / Salix viminalis. Biomass Bioenergy 34:1410-418 CrossRef
    39. Muyzer G, De Waal EC, Uiterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695-00
    40. Naees M, Ali Q, Shahbaz M, Ali F (2011) Role of rhizobacteria in phytoremediation of heavy metals: an overview. Int Res J Plant Sci 8:220-32
    41. Pierzinsky GM, Sims JT, Vance GF (2000) Soils and environmental quality. CRC Press, Boca Raton
    42. Pires C (2010) Bacteria in heavy metal contaminated soil: diversity, tolerance and use in remediation systems, PhD Thesis, Cranfield University, UK
    43. Podlesakova E, Nemecek J, Vacha R (2001) Mobility and bioavailability of trace metals in soils. In: Trace elements in soil. Bioavailability, flux and transfer, I K Iskandar and M B Kirkham USA
    44. Prasad MNV (1995) Cadmium toxicity and tolerance in vascular plants. Environ Exp Bot 35:525-45 CrossRef
    45. Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:14-8 CrossRef
    46. Ranathunge K, Steudle E, Lafitte R (2005) A new precipitation technique provides evidence for the permeability of Casparin bands to ions in young roots of corn ( / Zea mays L.) and rice ( / Oryza sativa L.). Plant Cell Environ 28:1450-462 CrossRef
    47. Ruiz E, Rodríguez L, Alonso-Azcaráte J, Rincón J (2009) Phytoextraction of metal polluted soils around a Pb-Zn mine by crop plants. Int J Phytorem 11:360-84 CrossRef
    48. Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21
    49. Schreiber L, Hartmann K, Skrabs M, Zeier J (1999) Apoplastic barriers in roots: chemical composition of endodermal and hypodermal cell walls. J Exp Bot 50:1267-280
    50. Sheng XF, Xia JJ (2006) Improvement of rape ( / Brassica napus) plant growth and cadmium uptake by cadmium resistant bacteria. Chemosphere 64:1036-042 CrossRef
    51. Sheng X, Sun L, Huang Z, He L, Zhang W, Chen Z (2012) Promotion of growth and Cu accumulation of bio-energy crop ( / Zea mays) by bacteria: implications for energy plant biomass production and phytoremediation. J Environ Manag 103:58-4 CrossRef
    52. Shi G, Cai Q (2009) Cadmium tolerance and accumulation in eight potential energy crops. Biotechnol Adv 27:555-61 CrossRef
    53. Teer Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167-179 CrossRef
    54. Thewys T, Witters N, Van Slycken S, Ruttens A, Meers E, Tack FM, Vangronsveld J (2010) Economic viability of phytoremediation of a cadmium contaminated agricultural area using energy maize. Part I: effect on the farmer’s income. Int J Phytorem 12:650-62 CrossRef
    55. Thomas GW (1982) Exchangeable cations. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2. American Society of Agronomy and Soil Science Inc., Madison, pp 159-65
    56. Toppi SL, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105-30 CrossRef
    57. Violante A, Cozzolino V, Perelomov L, Caporale AG, Pigna M (2010) Mobility and bioavailability of heavy metals and metalloids is soil environments. J Soil Sci Plant Nutr 10:268-92 CrossRef
    58. Wallinga I, Vark W, Houba VJG, Lee JJ (1989) Plant analysis procedures. Department of Soil Science and Plant Nutrition, Wageningen Agricultural University, Wageningen, Syllabus
    59. Wang M, Zou J, Duan X, Jiang W, Liu D (2007) Cadmium accumulation and its effects on metal uptake in maize ( / Zea mays L.). Bioresour Technol 98:82-8 CrossRef
    60. Wójcik M, Tukiendorf A (2005) Cadmium uptake, localization and detoxification in / Zea mays. Biol Plant 49:237-45 CrossRef
    61. Wuana RA, Okieimen FE (2010) Phytoremediation potential of maize ( / Zea mays L.): a review. Afr J Gen Agric 6:275-87
    62. Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of / Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in / Brassica juncea. Chemosphere 64:991-97 CrossRef
  • 作者单位:Helena Moreira (1)
    Ana P. G. C. Marques (1)
    Albina R. Franco (1)
    António O. S. S. Rangel (1)
    Paula M. L. Castro (1)

    1. CBQF—Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
  • ISSN:1614-7499
文摘
Zea mays (L.) is a crop widely cultivated throughout the world and can be considered suitable for phytomanagement due to its metal resistance and energetic value. In this study, the effect of two plant growth-promoting rhizobacteria, Ralstonia eutropha and Chryseobacterium humi, on growth and metal uptake of Z. mays plants in soils contaminated with up to 30?mg Cd kg? was evaluated. Bacterial inoculation increased plant biomass up to 63?% and led to a decrease of up to 81?% in Cd shoot levels (4-8?mg Cd kg?) and to an increase of up to 186?% in accumulation in the roots (52-34?mg Cd kg?). The rhizosphere community structure changed throughout the experiment and varied with different levels of Cd soil contamination, as revealed by molecular biology techniques. Z. mays plants inoculated with either of the tested strains may have potential application in a strategy of soil remediation, in particular short-term phytostabilization, coupled with biomass production for energy purposes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700