Stereoscopic augmented reality for laparoscopic surgery
详细信息    查看全文
  • 作者:Xin Kang (1)
    Mahdi Azizian (1)
    Emmanuel Wilson (1)
    Kyle Wu (1)
    Aaron D. Martin (1)
    Timothy D. Kane (1)
    Craig A. Peters (1)
    Kevin Cleary (1)
    Raj Shekhar (1)
  • 关键词:Augmented reality ; Surgical visualization ; Stereoscopic visualization ; Multimodality image fusion ; Laparoscopic surgery
  • 刊名:Surgical Endoscopy
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:28
  • 期:7
  • 页码:2227-2235
  • 全文大小:1,076 KB
  • 参考文献:1. Himal HS (2002) Minimally invasive (laparoscopic) surgery. Surg Endosc 16(12):1647鈥?652 CrossRef
    2. Rosen M, Ponsky J (2001) Minimally invasive surgery. Endoscopy 33(4):358鈥?66 CrossRef
    3. Storz P, Buess GF, Kunert W, Kirschniak A (2012) 3D HD versus 2D HD: surgical task efficiency in standardised phantom tasks. Surg Endosc 26(5):1454鈥?460 CrossRef
    4. Smith R, Day A, Rockall T, Ballard K, Bailey M, Jourdan I (2012) Advanced stereoscopic projection technology significantly improves novice performance of minimally invasive surgical skills. Surg Endosc 26(6):1522鈥?527 CrossRef
    5. Nakamoto M, Ukimura O, Faber K, Gill IS (2012) Current progress on augmented reality visualization in endoscopic surgery. Curr Opin Urol 22(2):121鈥?26 CrossRef
    6. Linte CA, Wiles A, Moore J, Wedlake C, Peters TM (2008) Virtual reality-enhanced ultrasound guidance for atrial ablation: in vitro epicardial study. Med Image Comput Comput Assist Interv 11(Pt 2):644鈥?51
    7. Leven J, Burschka D, Kumar R, Zhang G, Blumenkranz S, Dai XD, Awad M, Hager GD, Marohn M, Choti M, Hasser C, Taylor RH (2005) DaVinci canvas: a telerobotic surgical system with integrated, robot-assisted, laparoscopic ultrasound capability. Med Image Comput Comput Assist Interv 8:811鈥?18
    8. Su LM, Vagvolgyi BP, Agarwal R, Reiley CE, Taylor RH, Hager GD (2009) Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3D-CT to stereoscopic video registration. Urology 73(4):896鈥?00 CrossRef
    9. Cheung CL, Wedlake C, Moore J, Pautler SE, Ahmad A, Peters TM (2009) Fusion of stereoscopic video and laparoscopic ultrasound for minimally invasive partial nephrectomy. Proc SPIE 7261:726109鈥?26110 CrossRef
    10. Cheung CL, Wedlake C, Moore J, Pautler SE, Peters TM (2010) Fused video and ultrasound images for minimally invasive partial nephrectomy: a phantom study. Med Image Comput Comput Assist Interv 13(Pt 3):408鈥?15
    11. Ieiri S, Uemura M, Konishi K, Souzaki R, Nagao Y, Tsutsumi N, Akahoshi T, Ohuchida K, Ohdaira T, Tomikawa M, Tanoue K, Hashizume M, Taguchi T (2012) Augmented reality navigation system for laparoscopic splenectomy in children based on preoperative CT image using optical tracking device. Pediatr Surg Int 28(4):341鈥?46 CrossRef
    12. Teber D, Guven S, Simpfend枚rfer T, Baumhauer M, G眉ven EO, Yencilek F, G枚zen AS, Rassweiler J (2009) Augmented reality: a new tool to improve surgical accuracy during laparoscopic partial nephrectomy? Preliminary in vitro and in vivo results. Eur Urol 56(2):332鈥?38 CrossRef
    13. Simpfend枚rfer T, Baumhauer M, M眉ller M, Gutt CN, Meinzer HP, Rassweiler JJ, Guven S, Teber D (2011) Augmented reality visualization during laparoscopic radical prostatectomy. J Endourol 25(12):1841鈥?845 CrossRef
    14. Yaron A, Bar-Zohar M, Horesh N (2007) Miniature stereoscopic video system provides real-time 3D registration and image fusion for minimally invasive surgery. Proc SPIE 6490, Stereoscopic Displays and Virtual Reality Systems XIV 649009
    15. Hostettler A, George D, R茅mond Y, Nicolau SA, Soler L, Marescaux J (2010) Bulk modulus and volume variation measurement of the liver and the kidneys in vivo using abdominal kinetics during free breathing. Comput Methods Progr Biomed 100(2):149鈥?57 CrossRef
    16. Hostettler A, Nicolau SA, R茅mond Y, Marescaux J, Soler L (2010) A real-time predictive simulation of abdominal viscera positions during quiet free breathing. Prog Biophys Mol Biol 103(2鈥?):169鈥?84 CrossRef
    17. Shekhar R, Dandekar O, Bhat V, Philip M, Lei P, Godinez C, Sutton E, George I, Kavic S, Mezrich R, Park A (2010) Live augmented reality: a new visualization method for laparoscopic surgery using continuous volumetric computed tomography. Surg Endosc 24(8):1976鈥?985 CrossRef
    18. Zhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell 22(11):1330鈥?334 CrossRef
    19. Yaniv Z, Foroughi P, Kang HJ, Boctor E (2011) Ultrasound calibration framework for the image-guided surgery toolkit. Medical Imaging 2011: visualization, image-guided procedures, and modeling. Proc SPIE 7964:79641N鈥?鈥?9641N鈥?1 CrossRef
    20. Lu F, Hartley R (2007) A fast optimal algorithm for L2 triangulation. ACCV 2:279鈥?88
    21. Chen TK, Heffter T, Lasso A, Pinter C (2011) Automated intraoperative calibration for prostate cancer brachytherapy. Med Phys 38(11):6285鈥?299 CrossRef
  • 作者单位:Xin Kang (1)
    Mahdi Azizian (1)
    Emmanuel Wilson (1)
    Kyle Wu (1)
    Aaron D. Martin (1)
    Timothy D. Kane (1)
    Craig A. Peters (1)
    Kevin Cleary (1)
    Raj Shekhar (1)

    1. Sheikh Zayed Institute for Pediatric Surgical Innovation, Children鈥檚 National Medical Center, 111 Michigan Avenue NW, Washington, DC, 20010, USA
  • ISSN:1432-2218
文摘
Background Conventional laparoscopes provide a flat representation of the three-dimensional (3D) operating field and are incapable of visualizing internal structures located beneath visible organ surfaces. Computed tomography (CT) and magnetic resonance (MR) images are difficult to fuse in real time with laparoscopic views due to the deformable nature of soft-tissue organs. Utilizing emerging camera technology, we have developed a real-time stereoscopic augmented-reality (AR) system for laparoscopic surgery by merging live laparoscopic ultrasound (LUS) with stereoscopic video. The system creates two new visual cues: (1) perception of true depth with improved understanding of 3D spatial relationships among anatomical structures, and (2) visualization of critical internal structures along with a more comprehensive visualization of the operating field. Methods The stereoscopic AR system has been designed for near-term clinical translation with seamless integration into the existing surgical workflow. It is composed of a stereoscopic vision system, a LUS system, and an optical tracker. Specialized software processes streams of imaging data from the tracked devices and registers those in real time. The resulting two ultrasound-augmented video streams (one for the left and one for the right eye) give a live stereoscopic AR view of the operating field. The team conducted a series of stereoscopic AR interrogations of the liver, gallbladder, biliary tree, and kidneys in two swine. Results The preclinical studies demonstrated the feasibility of the stereoscopic AR system during in vivo procedures. Major internal structures could be easily identified. The system exhibited unobservable latency with acceptable image-to-video registration accuracy. Conclusions We presented the first in vivo use of a complete system with stereoscopic AR visualization capability. This new capability introduces new visual cues and enhances visualization of the surgical anatomy. The system shows promise to improve the precision and expand the capacity of minimally invasive laparoscopic surgeries.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700