Genetic Factors Affecting Late-Onset Alzheimer's Disease Susceptibility
详细信息    查看全文
  • 作者:Maryam Rezazadeh ; Aziz Khorrami ; Tarlan Yeghaneh ; Mahnaz Talebi…
  • 关键词:Alzheimer’s disease ; Association ; Polymorphism ; APOE ; Neurodegenerative diseases ; Azeri Turkish
  • 刊名:NeuroMolecular Medicine
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:18
  • 期:1
  • 页码:37-49
  • 全文大小:476 KB
  • 参考文献:Abraham, R., Moskvina, V., Sims, R., Hollingworth, P., Morgan, A., Georgieva, L., et al. (2008). A genome-wide association study for late-onset Alzheimer’s disease using DNA pooling. BMC Medical Genomics, 1, 44.PubMedCentral PubMed CrossRef
    Alberoni, M., Alfieri, P., Vesuviana, S., Amici, S., Antana, D., Appollonio, R. I., et al. (2000). The Dementia Study Group of the Italian Neurological Society. Guidelines for the diagnosis of dementia and Alzheimer’s disease. Neurological Sciences, 21, 187–194.CrossRef
    Alvarez, V., Mata, I. F., Gonzalez, P., Lahoz, C. H., Martínez, C., Peña, J., et al. (2002). Association between the TNFalpha-308 A/G polymorphism and the onset-age of Alzheimer disease. American Journal of Medical Genetics, 114(5), 574–577.PubMed CrossRef
    American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: American Psychological Association.
    Ando, K., Brion, J., Stygelbout, V., Suain, V., Authelet, M., Dedecker, R., et al. (2013). Clathrin adaptor CALM/PICALM is associated with neurofibrillary tangles and is cleaved in Alzheimer’s brains. Acta Neuropathologica, 125(6), 861–878.PubMed CrossRef
    Avramopoulos, D. (2009). Genetics of Alzheimer’s disease: Recent advances. Genome Medicine, 1(3), 34.PubMedCentral PubMed CrossRef
    Ba, F., Pang, P. K., Davidge, S. T., & Benishin, C. G. (2004). The neuroprotective effects of estrogen in SK-N-SH neuroblastoma cell cultures. Neurochemistry International, 44(6), 401–411.PubMed CrossRef
    Balistreri, C. R., Grimaldi, M. P., Vasto, S., Listi, F., Chiappelli, M., Licastro, F., et al. (2006). Association between the polymorphism of CCR5 and Alzheimer’s disease: Results of a study performed on male and female patients from Northern Italy. Annals of the New York Academy of Sciences, 1089, 454–461.PubMed CrossRef
    Becherini, L., Gennari, L., Masi, L., Mansani, R., Massart, F., Morelli, A., et al. (2000). Evidence of a linkage disequilibrium between polymorphisms in the human estrogen receptor alpha gene and their relationship to bone mass variation in postmenopausal Italian women. Human Molecular Genetics, 9(13), 2043–2050.PubMed CrossRef
    Beecham, G. W., Hamilton, K., Naj, A. C., Martin, E. R., Huentelman, M., Myers, A. J., et al. (2014). Genome-wide association meta-analysis of neuropathologic features of Alzheimer’s disease and related dementias. PLoS Genetics, 10(9), e1004606.PubMedCentral PubMed CrossRef
    Beecham, G. W., Martin, E. R., Li, Y. J., Slifer, M. A., Gilbert, J. R., Haines, J. L., et al. (2009). Genome-wide association study implicates a chromosome 12 risk locus for late-onset Alzheimer disease. American Journal of Human Genetics, 84(1), 35–43.PubMedCentral PubMed CrossRef
    Bertram, L., Schjeide, B. M., Hooli, B., Mullin, K., Hiltunen, M., Soininen, H., et al. (2008). No association between CALHM1 and Alzheimer’s disease risk. Cell, 135(6), 993–994. (author reply 994–996).PubMedCentral PubMed CrossRef
    Bertram, L., & Tanzi, R. E. (2012). The genetics of Alzheimer’s disease. Progress in Molecular Biology and Translational Science, 107, 79–100.PubMed CrossRef
    Biagioni, M. C., & Galvin, J. E. (2011). Using biomarkers to improve detection of Alzheimer’s disease. Neurodegenerative Disease Management, 1(2), 127–139.PubMedCentral PubMed CrossRef
    Biffi, A., Anderson, C. D., Desikan, R. S., Sabuncu, M., Cortellini, L., Schmansky, N., et al. (2010). Genetic variation and neuroimaging measures in Alzheimer disease. Archives of Neurology, 67(6), 677–685.PubMedCentral PubMed CrossRef
    Bird, T. D. (2008). Genetic aspects of Alzheimer disease. Genetics in Medicine, 10(4), 231–239.PubMedCentral PubMed CrossRef
    Blacker, D., Bertram, L., Saunders, A. J., Moscarillo, T. J., Albert, M. S., Wiener, H., et al. (2003). Genetics Initiative Alzheimer’s Disease Study Group: Results of a high-resolution genome screen of 437 Alzheimer’s disease families. Human Molecular Genetics, 2(1), 23–32.CrossRef
    Blacker, D., Haines, J. L., Rodes, L., Terwedow, H., Go, R. C., Harrell, L. E., et al. (1997). ApoE-4 and age at onset of Alzheimer’s disease: The NIMH genetics initiative. Neurology, 48(1), 139–147.PubMed CrossRef
    Blomqvist, M. E., Reynolds, C., Katzov, H., Feuk, L., Andreasen, N., Bogdanovic, N., et al. (2006). Towards compendia of negative genetic association studies: An example for Alzheimer disease. Human Genetics, 119(1–2), 29–37.PubMed CrossRef
    Boada, M., Antúnez, C., López-Arrieta, J., Galán, J. J., Morón, F. J., Hernández, I., et al. (2010). CALHM1 P86L polymorphism is associated with late-onset Alzheimer’s disease in a recessive model. Journal of Alzheimer’s Disease, 20(1), 247–251.PubMed
    Brandi, M. L., Becherini, L., Gennari, L., Racchi, M., Bianchetti, A., Nacmias, B., et al. (1999). Association of the estrogen receptor alpha gene polymorphisms with sporadic Alzheimer’s disease. Biochemical and Biophysical Research Communications, 265(2), 335–338.PubMed CrossRef
    Bsibsi, M., Ravid, R., Gveric, D., & Noort, J. M. (2002). Broad expression of Toll like receptors in the human central nervous system. Journal of Neuropathology and Experimental Neurology, 61(11), 1013–1021.PubMed CrossRef
    Cacabelos, R., Fernandez-Novoa, L., Lombardi, V., Kubota, Y., & Takeda, M. (2005). Molecular genetics of Alzheimer’s disease and aging. Methods and Findings in Experimental and Clinical Pharmacology, 27, 1–573.PubMed
    Carrasquillo, M. M., Belbin, O., Hunter, T. A., Ma, L., Bisceglio, G. D., Zou, F., et al. (2010). Replication of CLU, CR1, and PICALM associations with alzheimer disease. Archives of Neurology, 67(8), 961–964.PubMedCentral PubMed CrossRef
    Chiueh, C., Lee, S., Andoh, T., & Murphy, D. (2003). Induction of antioxidative and antiapoptotic thioredoxin supports neuroprotective hypothesis of estrogen. Endocrine, 21(1), 27–31.PubMed CrossRef
    Collins, J. S., Perry, R. T., Watson, B., Harrell, L. E., Acton, R. T., Blacker, D., et al. (2000). Association of a haplotype for tumor necrosis factor in siblings with late-onset Alzheimer disease: The NIMH Alzheimer Disease Genetics Initiative. American Journal of Medical Genetics, 96(6), 823–830.PubMed CrossRef
    Combarros, O., Infante, J., Llorca, J., Peña, N., Fernández-Viadero, C., & Berciano, J. (2004). The chemokine receptor CCR5-Delta32 gene mutation is not protective against Alzheimer’s disease. Neuroscience Letters, 366(3), 312–314.PubMed CrossRef
    Combarros, O., Riancho, J. A., Arozamena, J., Mateo, I., Llorca, J., Infante, J., et al. (2007). Interaction between estrogen receptor-alpha and butyrylcholinesterase genes modulates Alzheimer’s disease risk. Journal of Neurology, 254(9), 1290–1292.PubMed CrossRef
    Coon, K. D., Myers, A. J., Craig, D. W., Webster, J. A., Pearson, J. V., Lince, D. H., et al. (2007). A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer’s disease. Journal of Clinical Psychiatry, 68(4), 613–618.PubMed CrossRef
    Corbo, R. M., Gambina, G., Ruggeri, M., & Scacchi, R. (2006). Association of estrogen receptor alpha (ESR1) PvuII and XbaI polymorphisms with sporadic Alzheimer’s disease and their effect on apolipoprotein E concentrations. Dementia and Geriatric Cognitive Disorders, 22(1), 67–72.PubMed CrossRef
    Corder, E. H., Saunders, A. M., Risch, N. J., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., et al. (1994). Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nature Genetics, 7(2), 180–184.PubMed CrossRef
    Corneveaux, J., Myers, A. J., Allen, A. N., Pruzin, J., Ramirez, M., Engel, A., et al. (2010). Association of CR1, CLU and PICALM with Alzheimer’s disease in a cohort of clinically characterized and neuropathologically verified individuals. Human Molecular Genetics, 19(16), 3295–3301.PubMedCentral PubMed CrossRef
    Cui, P. J., Zheng, L., Cao, L., Wang, Y., Deng, Y. L., Wang, G., et al. (2009). CALHM1 P86L polymorphism is a risk factor for Alzheimer’s disease in the Chinese population. Journal of Alzheimer’s Disease, 19(1), 31–35.
    Culpan, D., MacGowan, S. H., Ford, J. M., Nicoll, J. A., Griffin, W. S., Dewar, D., et al. (2003). Tumour necrosis factor-alpha gene polymorphisms and Alzheimer’s disease. Neuroscience Letters, 350(1), 61–65.PubMed CrossRef
    Defina, P. A., Moser, S. O., Glenn, M., Lichtenstein, J. D., & Fellus, J. (2013). Alzheimer’s disease clinical and research update for health care practitioners. Journal of Aging Research, 2013, 207178.PubMedCentral PubMed CrossRef
    Dreses-Werringloer, U., Lambert, J. C., Vingtdeux, V., Zhao, H., Vais, H., Siebert, A., et al. (2008). A polymorphism in CALHM1 influences Ca2+ homeostasis, Abeta levels, and Alzheimer’s disease risk. Cell, 133(7), 1149–1161.PubMedCentral PubMed CrossRef
    Ertekin-Taner, N. (2007). Genetics of Alzheimer’s disease: A centennial review. Neurologic Clinics, 25(3), 611–667.PubMedCentral PubMed CrossRef
    Ertekin-Taner, N. (2010). Genetics of Alzheimer disease in the pre- and post-GWAS era. Alzheimer’s Research & Therapy, 2(1), 3.CrossRef
    Farrer, L. A., Cupples, L. A., van Duijn, C. M., Kurz, A., Zimmer, R., et al. (1995). Apolipoprotein E genotype in patients with Alzheimer’s disease: Implications for the risk of dementia among relatives. Annals of Neurology, 38(5), 797–808.PubMed CrossRef
    Galimberti, D., Fenoglio, C., Lovati, C., Gattia, A., Guidia, I., Venturellia, E., et al. (2004). CCR2-64I polymorphism and CCR5Δ32 deletion in patients with Alzheimer’s disease. Journal of the Neurological Sciences, 225(1), 79–83.PubMed CrossRef
    Gatz, M., Fratiglioni, L., Johansson, B., Berg, S., Mortimer, J. A., Reynolds, C. A., et al. (2005). Complete ascertainment of dementia in the Swedish Twin Registry: The HARMONY study. Neurobiology of Aging, 26(4), 439–447.PubMed CrossRef
    Gatz, M., Reynolds, C. A., Finkel, D., Pedersen, N. L., & Walters, E. (2010). Dementia in Swedish twins: Predicting incident cases. Behavior Genetics, 40(6), 768–775.PubMedCentral PubMed CrossRef
    Gezen-Ak, D., Dursun, E., Hanağası, H., Bilgiç, B., Lohman, E., Araz, Ö. S., et al. (2013). BDNF, TNFα, HSP90, CFH, and IL-10 serum levels in patients with early or late onset Alzheimer’s disease or mild cognitive impairment. Journal of Alzheimer’s Disease, 37(1), 185–195.PubMed
    Gharesouran, J., Rezazadeh, M., Khorrami, A., Ghojazadeh, M., Talebi, M., et al. (2014). Genetic evidence for the involvement of variants at APOE, BIN1, CR1, and PICALM loci in risk of late-onset Alzheimer’s disease and evaluation for interactions with APOE genotypes. Journal of Molecular Neuroscience, 54(4), 780–786.PubMed CrossRef
    Gharesouran, J., Rezazadeh, M., & Mohaddes, S. M. (2013). Investigation of five polymorphic DNA markers associated with late onset Alzheimer disease. Genetika, 45(2), 503–514.CrossRef
    Giedraitis, V., Kilander, L., Degerman-Gunnarsson, M., Sundelöf, J., Axelsson, T., Syvänen, A. C., et al. (2009). Genetic analysis of Alzheimer’s disease in the Uppsala Longitudinal Study of Adult Men. Dementia and Geriatric Cognitive Disorders, 27(1), 59–68.PubMed CrossRef
    Goate, A., Chartier-Harlin, M. C., Mullan, M., Brown, J., Crawford, F., Fidani, L., et al. (1991). Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature, 349(6311), 704–706.PubMed CrossRef
    Goldman, J. S., Hahn, S. E., Catania, J. W., LaRusse-Eckert, S., Butson, M. B., Rumbaugh, M., et al. (2011). Genetic counseling and testing for Alzheimer disease: Joint practice guidelines of the American College of Medical Genetics and the National Society of Genetic Counselors. Genetics in Medicine, 13(6), 597–605.PubMedCentral PubMed CrossRef
    Gozalpour, E., Kamali, K., Mohammd, K., Khorram Khorshid, H. R., Ohadi, M., Karimloo, M., et al. (2010). Association between Alzheimer’s disease and apolipoprotein E polymorphisms. Iranian Journal of Public Health, 39(2), 1–6.PubMedCentral PubMed
    Gyungah, J., Adam, C. N., & Gary, W. B. (2010). Meta-analysis confirms CR1, CLU, and PICALM as Alzheimer disease risk loci and reveals interactions with APOE genotypes. Archives of Neurology, 67(12), 1473–1484.CrossRef
    Harel, A., Wu, F., Mattson, M. P., Morris, C. M., & Yao, P. J. (2008). Evidence for CALM in directing VAMP2 trafficking. Traffic, 9(3), 417–429.PubMed CrossRef
    Harold, D., Abraham, R., Hollingworth, P., Sims, R., Gerrish, A., Hamshere, M., et al. (2009). Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease, and shows evidence for additional susceptibility genes. Nature Genetics, 41(10), 1088–1093.PubMedCentral PubMed CrossRef
    Harries, L. W., Bradley-smith, R. M., Llewellyn, D. J., Pilling, L. C., Fellows, A., Henley, W., et al. (2012). Leukocyte CCR2 expression is associated with mini-mental state examination score in older adults. Rejuvenation Research, 15(4), 395–404.PubMedCentral PubMed CrossRef
    Hatters, D. M., Peters-Libeu, C. A., & Weisgraber, K. H. (2006). Apolipoprotein E structure: Insights into function. Trends in Biochemical Sciences, 31(8), 445–454.PubMed CrossRef
    Hollingworth, P., Harold, D., Sims, R., Gerrish, A., Lambert, J. C., Carrasquillo, M. M., et al. (2011). Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nature Genetics, 43(5), 429–435.PubMedCentral PubMed CrossRef
    Hostage, C. A., Roy Choudhury, K., Doraiswamy, P. M., & Petrella, J. R. (2013). Dissecting the gene dose-effects of the APOE ε4 and ε2 alleles on hippocampal volumes in aging and Alzheimer’s disease. PLoS ONE, 8(2), e54483.PubMedCentral PubMed CrossRef
    Houlden, H., Crook, R., Hardy, J., Roques, P., Collinge, J., & Rossor, M. (1994). Confirmation that familial clustering and age of onset in late onset Alzheimer’s disease are determined at the apolipoprotein E locus. Neuroscience Letters, 174(2), 222–224.PubMed CrossRef
    Hu, X., Pickering, E., Liu, Y. C., Hall, S., Fournier, H., Katz, E., et al. (2011). Meta-analysis for genome-wide association study identifies multiple variants at the BIN1 locus associated with late-onset Alzheimer’s disease. PLoS One, 6(2), e16616.PubMedCentral PubMed CrossRef
    Huerta, C., Alvarez, V., Mata, I. F., Coto, E., Ribacoba, R., Martínez, C., et al. (2004). Chemokines (RANTES and MCP-1) and chemokine-receptors (CCR2 and CCR5) gene polymorphisms in Alzheimer’s and Parkinson’s disease. Neuroscience Letters, 370(2–3), 151–154.PubMed CrossRef
    Inoue, K., Tanaka, N., Yamashita, F., Sawano, Y., Asada, T., & Goto, Y. (2010). The P86L common allele of CALHM1 does not influence risk for Alzheimer disease in Japanese cohorts. American Journal of Medical Genetics: Part B Neuropsychiatric Genetics, 153B(2), 532–535.
    Ji, Y., Urakami, K., Wada-Isoe, K., Adachi, Y., & Nakashima, K. (2000). Estrogen receptor gene polymorphisms in patients with Alzheimer’s disease, vascular dementia and alcohol-associated dementia. Dementia and Geriatric Cognitive Disorders, 11(3), 119–122.PubMed CrossRef
    Jones, L., Holmans, P. A., Hamshere, M. L., Harold, D., Moskvina, V., Ivanov, D., et al. (2010). Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer’s disease. PLoS One, 5(11), e13950.PubMedCentral PubMed CrossRef
    Jun, G., Naj, A. C., Beecham, G. W., Wang, L. S., Buros, J., Gallins, P. J., et al. (2010). Meta-analysis confirms CR1, CLU, and PICALM as alzheimer disease risk loci and reveals interactions with APOE genotypes. Archives of Neurology, 67(12), 1473–1484.PubMedCentral PubMed CrossRef
    Kamboh, M. I., Minster, R. L., Demirci, F. Y., Ganguli, M., Dekosky, S. T., Lopez, O. L., et al. (2012). Association of CLU and PICALM variants with Alzheimer’s disease. Neurobiology of Aging, 33(3), 518–521.PubMedCentral PubMed CrossRef
    Karch, C. M., Jeng, A. T., Nowotny, P., Cady, J., Cruchaga, C., & Goate, A. M. (2012). Expression of novel Alzheimer’s disease risk genes in control and Alzheimer’s disease brains. PLoS One, 7(11), e50976.PubMedCentral PubMed CrossRef
    Kok, E. H., Luoto, T., Haikonen, S., Goebeler, S., Haapasalo, H., & Karhunen, P. J. (2011). CLU, CR1 and PICALM genes associate with Alzheimer’s-related senile plaques. Alzheimer’s Research & Therapy, 3(2), 12–15.CrossRef
    Koren, J., Jinwal, U. K., Lee, D. C., Jones, J. R., Shults, C. L., Johnson, A. G., et al. (2009). Chaperone signalling complexes in Alzheimer’s disease. Journal of Cellular and Molecular Medicine, 13(4), 619–630.PubMedCentral PubMed CrossRef
    Lambert, J. C., Harris, J. M., Mann, D., Lemmon, H., Coates, J., Cumming, A., et al. (2001). Are the estrogen receptors involved in Alzheimer’s disease? Neuroscience Letters, 306(3), 193–197.PubMed CrossRef
    Lambert, J. C., Heath, S., Even, G., Campion, D., Sleegers, K., Hiltunen, M., et al. (2009). Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nature Genetics, 41(10), 1094–1099.PubMed CrossRef
    Lambert, J. C., Zelenika, D., Hiltunen, M., Chouraki, V., Combarros, O., Bullido, M. J., et al. (2011). Evidence of the association of BIN1 and PICALM with the AD risk in contrasting European populations. Neurobiology of Aging, 32(4), 756.e11-5.PubMed CrossRef
    Landreth, G. E., & Reed-Geaghan, E. G. (2009). TLRs in Alzheimer’s disease. Current Topics in Microbiology and Immunology, 336, 137–153.PubMedCentral PubMed
    Lee, J. H., Cheng, R., Barral, S., Reitz, C., Medrano, M., Lantigua, R., et al. (2011). Identification of novel loci for Alzheimer disease and replication of CLU, PICALM, and BIN1 in Caribbean Hispanic individuals. Archives of Neurology, 3, 320–328.
    Levy-Lahad, E., & Bird, T. D. (1996). Genetic factors in Alzheimer’s disease: A review of recent advances. Annals of Neurology., 40(6), 829–840.PubMed CrossRef
    Li, H., Wetten, S., Li, L., St Jean, P. L., Upmanyu, R., Surh, L., et al. (2008). Candidate single-nucleotide polymorphisms from a genomewide association study of Alzheimer disease. Archives of Neurology, 65(1), 45–53.PubMed CrossRef
    Lin, G. F., Ma, Q. W., Zhang, D. S., Zha, Y. L., Lou, K. J., & Shen, J. H. (2003). Polymorphism of alpha-estrogen receptor and aryl hydrocarbon receptor genes in dementia patients in Shanghai suburb. Acta Pharmacologica Sinica, 24(7), 651–656.PubMed
    Liu, C., Kanekiyo, T., Xu, H., & Bu, G. (2009). Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy. Nature Reviews Neurology, 9(2), 106–118.CrossRef
    Ma, S. L., Tang, N. L., Tam, C. W., Lui, V. W., Lau, E. S., Zhang, Y. P., et al. (2009). Polymorphisms of the estrogen receptor alpha (ESR1) gene and the risk of Alzheimer’s disease in a southern Chinese community. International Psychogeriatrics, 21(5), 977–986.PubMed CrossRef
    Mahley, R. W., & Huang, Y. (2006). Apolipoprotein (apo) E4 and Alzheimer’s disease: Unique conformational and biophysical properties of apoE4 can modulate neuropathology. Acta Neurologica Scandinavica. Supplementum, l, 185, 8–14.CrossRef
    Marambaud, P., Dreses-Werringloer, U., & Vingtdeux, V. (2009). Calcium signaling in neurodegeneration. Molecular Neurodegeneration, 4, 20–24.PubMedCentral PubMed CrossRef
    Masoodi, T. A., Al Shammari, S. A., Al-Muammar, M. N., Alhamdan, A. A., & Talluri, V. R. (2013). Exploration of deleterious single nucleotide polymorphisms in late-onset Alzheimer disease susceptibility genes. Gene, 512(2), 429–437.PubMed CrossRef
    Mattila, K. M., Axelman, K., Rinne, J. O., Blomberg, M., Lehtimäki, T., Laippala, P., et al. (2000). Interaction between estrogen receptor 1 and the epsilon4 allele of apolipoprotein E increases the risk of familial Alzheimer’s disease in women. Neuroscience Letters, 282(1–2), 45–48.PubMed CrossRef
    McAlpine, F. E., Lee, J., Harms, A. S., Ruhn, K. A., Blurton-Jones, M., Hong, J., et al. (2009). Inhibition of soluble TNF signaling in a mouse model of Alzheimer’s disease prevents pre-plaque amyloid-associated neuropathology. Neurobiology of Disease, 34(1), 163–177.PubMedCentral PubMed CrossRef
    Melesie, G., & Dinsa, H. (2013). A literature review on: pathogenesis and management of dementia due to Alzheimer disease. Bio-Genetics Journal, 1(1), 18–31.
    Minster, R. L., Demirci, F. Y., Dekosky, S. T., & Kamboh, M. I. (2009). No association between CALHM1 variation and risk of Alzheimer disease. Human Mutation, 30(4), E566–E569.PubMedCentral PubMed CrossRef
    Naj, A. C., Jun, G., Beecham, G. W., Wang, L. S., Vardarajan, B. N., Buros, J., et al. (2011). Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nature Genetics, 43(5), 436–441.PubMedCentral PubMed CrossRef
    Navratilova, Z. (2006). Polymorphisms in CCL2 & CCL5 chemokines/chemokine receptors genes and their association with diseases. Biomedical papers of the Medical Faculty of the University Palacky, Olomouc Czech Republic, 150(2), 191–204.CrossRef
    Nishimura, M., Kuno, S., Mizuta, I., Ohta, M., Maruyama, H., Kaji, R., et al. (2003). Influence of monocyte chemoattractant protein 1 gene polymorphism on age at onset of sporadic Parkinson’s disease. Movement Disorders, 18(8), 953–955.PubMed CrossRef
    Parikh, I., Fardo, D. W., & Estus, S. (2014). Genetics of PICALM expression and Alzheimer’s disease. PLoS One, 9(3), e91242.PubMedCentral PubMed CrossRef
    Piaceri, I., Bagnoli, S., Lucenteforte, E., Mancuso, M., Tedde, A., & Siciliano, G. (2011). Implication of a genetic variant at PICALM in Alzheimer’s disease patients and centenarians. Journal of Alzheimer’s Disease, 24(3), 409–413.PubMed
    Porrello, E., Monti, M. C., Sinforiani, E., Cairati, M., Guaita, A., Montomoli, C., et al. (2006). Estrogen receptor alpha and APOEepsilon4 polymorphisms interact to increase risk for sporadic AD in Italian females. European Journal of Neurology, 13(6), 639–644.PubMed CrossRef
    Randall, C. N., Strasburger, D., Prozonic, J., Morris, S. N., Winkie, A. D., Parker, G. R., et al. (2009). Cluster analysis of risk factor genetic polymorphisms in Alzheimer’s disease. Neurochemical Research, 34(1), 23–28.PubMed CrossRef
    Ray, W. J., Ashall, F., & Goate, A. M. (1998). Molecular pathogenesis of sporadic and familial forms of Alzheimer’s disease. Molecular Medicine Today, 4(4), 151–157.PubMed CrossRef
    Reitz, C., Brayne, C., & Mayeux, R. (2011). Epidemiology of Alzheimer disease. Nature Reviews Neurology, 7(3), 137–152.PubMedCentral PubMed CrossRef
    Richard, K. L., Filali, M., Préfontaine, P., & Rivest, S. (2008). Toll-like receptor 2 acts as a natural innate immune receptor to clear amyloid beta 1–42 and delay the cognitive decline in a mouse model of Alzheimer’s disease. Journal of Neuroscience, 22, 5784–5793.CrossRef
    Ripke, S., O’Dushlaine, C., Chambert, K., Moran, J. L., Kähler, A. K., Akterin, S., et al. (2013). Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nature Genetics, 45(10), 1150–1159.PubMedCentral PubMed CrossRef
    Sambamurti, K., Greig, N. H., & Lahiri, D. K. (2002). Advances in the cellular and molecular biology of the beta-amyloid protein in Alzheimer’s disease. NeuroMolecular Medicine, 1(1), 1–31.PubMed CrossRef
    Sando, S. B., Melquist, S., Cannon, A., Hutton, L. M., Sletvold, O., Saltvedt, I., et al. (2008). APOE ε4 lowers age at onset and is a high risk factor for Alzheimer’s disease; A case control study from central Norway. BMC Neurology, 8, 9.PubMedCentral PubMed CrossRef
    Schellenberg, G. D., & Montine, T. J. (2012). The genetics and neuropathology of Alzheimer’s disease. Acta Neuropathologica, 124(3), 305–323.PubMedCentral PubMed CrossRef
    Seshadri, S., Fitzpatrick, A. L., Ikram, M. A., DeStefano, A. L., Gudnason, V., Boada, M., et al. (2010). Genome-wide analysis of genetic loci associated with Alzheimer disease. The Journal of American Medical Association, 303(18), 1832–1840.CrossRef
    Sezgin, I., Koksal, B., Bagci, G., Kurtulgan, H. K., & Ozdemir, O. (2011). CCR2 polymorphism in chronic renal failure patients requiring long-term hemodialysis. Internal Medicine, 21, 2457–2461.CrossRef
    Sherrington, R., Froelich, S., Sorbi, S., Chi, H., Rogaeva, E. A., Levesque, G., et al. (1996). Alzheimer’s disease associated with mutations in presenilin 2 is rare and variably penetrant. Human Molecular Genetics, 5(7), 985–988.PubMed CrossRef
    Shi, H., Belbin, O., Medway, C., Brown, K., Kalsheker, N., Carrasquillo, M., et al. (2012). Genetic variants influencing human aging from late-onset Alzheimer’s disease (LOAD) genome-wide association studies (GWAS). Neurobiology of Aging, 33(8), 1849.e5-18.PubMed CrossRef
    Shibata, N., Kuerban, B., Komatsu, M., Ohnuma, T., Baba, H., & Arai, H. (2010). Genetic association between CALHM1, 2, and 3 polymorphisms and Alzheimer’s disease in a Japanese population. Journal of Alzheimer’s Disease, 20(2), 417–421.PubMed
    Shoji, M., Kuwano, R., Asada, T., Imagawa, M., Higuchi, S., Urakami, K., et al. (2005). A proposal for diagnostic and clinical assessment criteria for Alzheimer’s disease. Rinshō shinkeigaku, 45(2), 128–137.PubMed
    Sundermann, E. E., Maki, P. M., & Bishop, J. R. (2010). A review of estrogen receptor α gene (ESR1) polymorphisms, mood, and cognition. Menopause, 17(4), 874–886.PubMedCentral PubMed CrossRef
    Tan, E. K., Ho, P., Cheng, S. Y., Yih, Y., Li, H. H., Fook-Chong, S., et al. (2011). CALHM1 variant is not associated with Alzheimer’s disease among Asians. Neurobiology of Aging, 32(3), 546.PubMed CrossRef
    Tan, M. S., Yu, J. T., & Tan, L. (2013). Bridging integrator 1 (BIN1): Form function, and Alzheimer’s disease. Trends in Molecular Medicine, 19(10), 594–603.PubMed CrossRef
    Tweedie, D., Ferguson, R. A., Fishman, K., Frankola, K. A., Van Praag, H., Holloway, H. W., et al. (2012). Tumor necrosis factor-α synthesis inhibitor 3, 6′-dithiothalidomide attenuates markers of inflammation, Alzheimer pathology and behavioral deficits in animal models of neuroinflammation and Alzheimer’s disease. Journal of Neuroinflammation, 9, 106–108.PubMedCentral PubMed CrossRef
    Vande, I. B., Asosingh, K., Vanderkerken, K., Straetmans, N., Van Camp, B., & Van Riet, I. (2003). Chemokine receptor CCR2 is expressed by human multiple myeloma cells and mediates migration to bone marrow stromal cell-produced monocyte chemotactic proteins MCP-1, -2 and -3. British Journal of Cancer, 88(6), 855–862.CrossRef
    Wang, L. Z., Tian, Y., Yu, J. T., Chen, W., Wu, Z. C., Zhang, Q., et al. (2011). Association between late-onset Alzheimer’s disease and microsatellite polymorphisms in intron II of the human toll-like receptor 2 gene. Neuroscience Letters, 489(3), 164–167.PubMed CrossRef
    Wijsman, E. M., Pankratz, N. D., Choi, Y., Rothstein, J. H., Faber, K. M., Cheng, R., et al. (2011). Genome-wide association of familial late-onset Alzheimer’s disease replicates BIN1 and CLU and nominates CUGBP2 in interaction with APOE. PLoS Genetics, 7(2), e1001308.PubMedCentral PubMed CrossRef
    Wilson, R. S., Barral, S., Lee, J. H., Leurgans, S. E., Foroud, T. M., Sweet, R. A., et al. (2011). Heritability of different forms of memory in the Late Onset Alzheimer’s Disease Family Study. Journal of Alzheimer’s Disease, 23(2), 249–255.PubMedCentral PubMed
    Wuwongse, S., Chang, R. C., & Law, A. C. K. (2010). The putative neurodegenerative links between depression and Alzheimer’s disease. Progress in Neurobiology, 91(4), 362–375.PubMed CrossRef
    www.​alzgene.​org
    Xiao, Q., Gil, S., Yan, P., Wang, Y., Han, S., Gonzales, E., et al. (2012). Role of phosphatidylinositol clathrin assembly lymphoid-myeloid leukemia (PICALM) in intracellular amyloid precursor protein (APP) processing and amyloid plaque pathogenesis. Journal of Biological Chemistry, 287(25), 21279–21289.PubMedCentral PubMed CrossRef
    Xing, X., Jia, J. P., Ji, X. J., & Tian, T. (2013). Estrogen associated gene polymorphisms and their interactions in the progress of Alzheimer’s disease. Progress in Neurobiology, 111, 53–74.PubMed CrossRef
    Yu, J. T., Li, L., Zhu, Q. X., Zhang, Q., Zhang, W., Wu, Z. C., et al. (2010). Implication of CLU gene polymorphisms in Chinese patients with Alzheimer’s disease. Clinica Chimica Acta, 411(19–20), 1516–1519.CrossRef
    Yu, J. T., Mou, S., Wang, L., Mao, C., & Tan, L. (2011). Toll-like receptor 2 −196 to −174 del polymorphism influences the susceptibility of Han Chinese people to Alzheimer’ s disease. Journal of Neuroinflammation, 8, 136.PubMedCentral PubMed CrossRef
    Zetzsche, T., Rujescu, D., Hardy, J., & Hampel, H. (2010). Advances and perspectives from genetic research: Development of biological markers in Alzheimer’s disease. Expert Review of Molecular Diagnostics, 10(5), 667–690.PubMed CrossRef
    Zhang, Q., Yu, J. T., Zhu, Q. X., Zhang, W., Wu, Z. C., Miao, D., et al. (2010). Complement receptor 1 polymorphisms and risk of late-onset Alzheimer’s disease. Brain Research, 1348, 216–221.PubMed CrossRef
  • 作者单位:Maryam Rezazadeh (1)
    Aziz Khorrami (1)
    Tarlan Yeghaneh (1)
    Mahnaz Talebi (2)
    Seyed Jalal Kiani (3)
    Yaser Heshmati (4)
    Jalal Gharesouran (1)

    1. Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
    2. Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
    3. Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
    4. Department of Medicine, Huddinge, H7, Karolinska Institutet, Stockholm, Sweden
  • 刊物主题:Neurosciences; Neurology; Internal Medicine;
  • 出版者:Springer US
  • ISSN:1559-1174
文摘
Alzheimer’s disease is considered a progressive brain disease in the older population. Late-onset Alzheimer’s disease (LOAD) as a multifactorial dementia has a polygenic inheritance. Age, environment, and lifestyle along with a growing number of genetic factors have been reported as risk factors for LOAD. Our aim was to present results of LOAD association studies that have been done in northwestern Iran, and we also explored possible interactions with apolipoprotein E (APOE) status. We re-evaluated the association of these markers in dominant, recessive, and additive models. In all, 160 LOAD and 163 healthy control subjects of Azeri Turkish ethnicity were studied. The Chi-square test with Yates’ correction and Fisher’s exact test were used for statistical analysis. A Bonferroni-corrected p value, based on the number of statistical tests, was considered significant. Our results confirmed that chemokine receptor type 2 (CCR2), estrogen receptor 1 (ESR1), toll-like receptor 2 (TLR2), tumor necrosis factor alpha (TNF α), APOE, bridging integrator 1 (BIN1), and phosphatidylinositol-binding clathrin assembly protein (PICALM) are LOAD susceptibility loci in Azeri Turk ancestry populations. Among them, variants of CCR2, ESR1, TNF α, and APOE revealed associations in three different genetic models. After adjusting for APOE, the association (both allelic and genotypic) with CCR2, BIN1, and ESRα (PvuII) was evident only among subjects without the APOE ε4, whereas the association with CCR5, without Bonferroni correction, was significant only among subjects carrying the APOE ε4 allele. This result is an evidence of a synergistic and antagonistic effect of APOE on variant associations with LOAD.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700