Polychlorinated biphenyl (118) activates osteoclasts and induces bone resorption in goldfish
详细信息    查看全文
  • 作者:Koji Yachiguchi (1)
    Noriko Matsumoto (1)
    Yuki Haga (2)
    Motoharu Suzuki (2)
    Chisato Matsumura (2)
    Masahiro Tsurukawa (2)
    Toshihiro Okuno (2)
    Takeshi Nakano (2)
    Kimi Kawabe (3)
    Kei-ichiro Kitamura (4)
    Akira Toriba (3)
    Kazuichi Hayakawa (3)
    Vishwajit S. Chowdhury (5)
    Masato Endo (6)
    Atsuhiko Chiba (7)
    Toshio Sekiguchi (1)
    Masaki Nakano (8)
    Yoshiaki Tabuchi (9)
    Takashi Kondo (10)
    Shigehito Wada (11)
    Hiroyuki Mishima (12)
    Atsuhiko Hattori (8)
    Nobuo Suzuki (1)
  • 关键词:PCB (118) ; Bone metabolism ; Fish scales ; Osteoclasts ; Osteoblasts ; Plasma calcium
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:21
  • 期:10
  • 页码:6365-6372
  • 全文大小:
  • 参考文献:1. Aksoy A, Das YK, Yavuz O, Guvenc D, Atmaca E, Agaoglu S (2011) Organochlorine pesticide and polychlorinated biphenyls levels in fish and mussel in Van region, Turkey. Bull Environ Contam Toxicol 87:65-9 CrossRef
    2. Azuma K, Kobayashi M, Nakamura M, Suzuki N, Yashima S, Iwamuro S, Ikegame M, Yamamoto T, Hattori A (2007) Two osteoclastic markers expressed in multinucleate osteoclasts of goldfish scales. Biochem Biophys Res Commun 362:594-00 CrossRef
    3. Bereiter-Hahn J, Zylberberg L (1993) Regeneration of teleost fish scale. Comp Biochem Physiol 105A:625-41 CrossRef
    4. Bhavsar SP, Fletcher R, Hayton A, Reiner EJ, Jackson DA (2007) Composition of dioxin-like PCBs in fish: an application for risk assessment. Environ Sci Technol 41:3096-102 CrossRef
    5. Bovee TFH, Helsdingen RJR, Hamers ARM, Brouwer BA, Nielen MWF (2011) Recombinant cell bioassays for the detection of (gluco) corticosteroids and endocrine-disrupting potencies of several environmental PCB contaminants. Anal Bioanal Chem 401:873-82 CrossRef
    6. Gutleb AC, Arvidsson D, ?rberg J, Larsson S, Skaare JU, Aleksandersen M, Ropstad E, Lind PM (2010) Effects on bone tissue in ewes ( / Ovies aries) and their foetuses exposed to PCB 118 and PCB 153. Toxicol Lett 192:126-33 CrossRef
    7. Hirai T, Fujimine Y, Watanabe S, Nakano T (2005) Congener-specific analysis of polychlorinated biphenyl in human blood from Japanese. Environ Geochem Health 27:65-3 CrossRef
    8. Hodgson S, Thomas L, Fattore E, Lind PM, Alfven T, Hellstr?m L, H?kansson H, Carubelli G, Fanelli R, Jarup L (2008) Bone mineral density changes in relation to environmental PCB exposure. Environ Health Perspect 116:1162-166 CrossRef
    9. Holliday DK, Holliday CM (2012) The effects of the organopollutant PCB 126 on bone density in juvenile diamondback terrapins ( / Malaclemys terrapin). Aquat Toxicol 109:228-33 CrossRef
    10. Hope BK (2008) A model for the presence of polychlorinated biphenyls (PCBs) in the Willamette River Basin (Oregon). Environ Sci Technol 42:5998-006 CrossRef
    11. Jan J, Milka V, Azra P, Dominik G, Matja? Z (2006) Distribution of organochlorine pollutants in ovine dental tissues and bone. Environ Toxicol Pharmacol 21:103-07 CrossRef
    12. Ju L, Tang K, Guo XR, Yang Y, Zhu GZ, Lou Y (2012) Effects of embryonic exposure to polychlorinated biphenyls on zebrafish skeletal development. Mol Med Report 5:1227-231
    13. Lacey DL, Boyle WJ, Simonet WS, Kostenuik PJ, Dougall WC, Sullivan JK, Martin JS, Dansey R (2012) Bench to bedside: elucidation of the OPG–RANK–RANKL pathway and the development of denosumab. Nat Rev Drug Discov 11:401-19 CrossRef
    14. Lake JL, Ryba SA, Serbst JR, Libby AD (2006) Mercury in fish scales as an assessment method for predicting muscle tissue mercury concentrations in largemouth bass. Arch Environ Contam Toxicol 50:539-44 CrossRef
    15. Lans MC, Klasson-Wehler E, Willemsen M, Meussen E, Safe S, Brouwer A (1993) Structure-dependent, competitive interaction of hydroxy-polychlorobiphenyls, -dibenzo-p-dioxins and -dibenzofurans with human transthyretin. Chem Biol Interact 88:7-1 CrossRef
    16. Lind PM, Eriksen EF, Lind L, ?rberg J, Sahlin L (2004a) Estrogen supplementation modulates effects of endocrine disrupting pollutant PCB126 in rat bone and uterus diverging effects in ovariectomized and intact animals. Toxicology 199:129-36 CrossRef
    17. Lind PM, Milnes MR, Lundberg R, Bermudez D, ?rberg J, Guillette LJ Jr (2004b) Abnormal bone composition in female juvenile American alligators from a pesticide-polluted lake (Lake Apopka, Florida). Environ Health Perspect 112:359-62 CrossRef
    18. Mugiya Y, Watabe N (1977) Studies on fish scale formation and resorption II: effect of estradiol on calcium homeostasis and skeletal tissue resorption in the goldfish, / Carassius auratus, and the killifish, / Fundulus heteroclitus. Comp Biochem Physiol 57A:197-02 CrossRef
    19. Nakayama K, Sei N, Handoh IC, Shimasaki Y, Honjo T, Oshima Y (2011) Effects of polychlorinated biphenyls on liver function and sexual characteristics in Japanese medaka ( / Oryzias latipes). Mar Pollut Bull 63:366-69 CrossRef
    20. Nishimoto SK, Araki N, Robinson FD, Waite JH (1992) Discovery of bone γ-carboxyglutamic acid protein in mineralized scales. J Biol Chem 267:11600-1605
    21. Ohira Y, Shimizu M, Ura K, Takagi Y (2007) Scale regeneration and calcification in goldfish / Carassius auratus: quantitative and morphological processes. Fisheries Sci 73:46-4 CrossRef
    22. Olufsen M, Arukwe A (2011) Developmental effects related to angiogenesis and osteogenic differentiation in salmon larvae continuously exposed to dioxin-like 3,3-4,4-tetrachlorobiphenyl (congener 77). Aquat Toxicol 105:669-80 CrossRef
    23. Omori K, Wada S, Maruyama Y, Hattori A, Kitamura K, Sato Y, Nara M, Funahashi H, Yachiguchi K, Hayakawa K, Endo M, Kusakari R, Yano S, Srivastav AK, Kusui T, Ejiri S, Chen W, Tabuchi Y, Furusawa Y, Kondo T, Sasayama Y, Nishiuchi T, Nakano M, Sakamoto T, Suzuki N (2012) Prostaglandin E2 increases both osteoblastic and osteoclastic activities in the scales of goldfish and participates in the calcium metabolism in goldfish. Zool Sci 29:499-04 CrossRef
    24. Onozato H, Watabe N (1979) Studies on fish scale formation and resorption III: fine structure and calcification of the fibrillary plates of the scales in / Crassius auratus (Cypriniformes: Cyprinidae). Cell Tissue Res 201:409-22 CrossRef
    25. Peacock M (2010) Calcium metabolism in health and disease. Clin J Am Soc Nephrol 5:S23–S30 CrossRef
    26. Sonne C, Dietz R, Born EW, Riget FF, Kirkegaard M, Hyldstrup L, Letcher RJ, Muir DCG (2004) Is bone mineral composition disrupted by organochlorines in east Greenland polar bears ( / Ursus martitimus)? Environ Health Perspect 112:1711-716 CrossRef
    27. Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20:345-57 CrossRef
    28. Suzuki N, Hattori A (2002) Melatonin suppresses osteoclastic and osteoblastic activities in the scales of goldfish. J Pineal Res 33:253-58 CrossRef
    29. Suzuki N, Hattori A (2003) Bisphenol A suppresses osteoclastic and osteoblastic activities in the cultured scales of goldfish. Life Sci 73:2237-247 CrossRef
    30. Suzuki N, Suzuki T, Kurokawa T (2000) Suppression of osteoclastic activities by calcitonin in the scales of goldfish (freshwater teleost) and nibbler fish (seawater teleost). Peptides 21:115-24 CrossRef
    31. Suzuki N, Yamamoto K, Sasayama Y, Suzuki T, Kurokawa T, Kambegawa A, Srivastav AK, Hayashi S, Kikuyama S (2004a) Possible direct induction by estrogen of calcitonin secretion from ultimobranchial cells in the goldfish. Gen Comp Endocrinol 138:121-27 CrossRef
    32. Suzuki N, Yamamoto M, Watanabe K, Kambegawa A, Hattori A (2004b) Both mercury and cadmium directly influence calcium homeostasis resulting from the suppression of scale bone cells: the scale is a good model for the evaluation of heavy metals in bone metabolism. J Bone Miner Metab 22:439-46
    33. Suzuki N, Tabata MJ, Kambegawa A, Srivastav AK, Shimada A, Takeda H, Kobayashi M, Wada S, Katsumata T, Hattori A (2006) Tributyltin inhibits osteoblastic activity and disrupts calcium metabolism through an increase in plasma calcium and calcitonin levels in teleosts. Life Sci 78:2533-541 CrossRef
    34. Suzuki N, Kitamura K, Nemoto T, Shimizu N, Wada S, Kondo T, Tabata MJ, Sodeyama F, Ijiri K, Hattori A (2007) Effect of vibration on osteoblastic and osteoclastic activities: analysis of bone metabolism using goldfish scale as a model for bone. Adv Space Res 40:1711-721 CrossRef
    35. Suzuki N, Kitamura K, Omori K, Nemoto T, Satoh Y, Tabata MJ, Ikegame M, Yamamoto T, Ijiri K, Furusawa Y, Kondo T, Takasaki I, Tabuchi Y, Wada S, Shimizu N, Sasayama Y, Endo M, Takeuchi T, Nara M, Somei M, Maruyama Y, Hayakawa K, Shimazu T, Shigeto Y, Yano S, Hattori A (2009) Response of osteoblasts and osteoclasts in regenerating scales to gravity loading. Biol Sci Space 23:211-17 CrossRef
    36. Suzuki N, Danks JA, Maruyama Y, Ikegame M, Sasayama Y, Hattori A, Nakamura M, Tabata MJ, Yamamoto T, Furuya R, Saijoh K, Mishima H, Srivastav AK, Furusawa Y, Kondo T, Tabuchi Y, Takasaki I, Chowdhury VS, Hayakawa K, Martin TJ (2011a) Parathyroid hormone 1 (1-4) acts on the scales and involves calcium metabolism in goldfish. Bone 48:1186-193 CrossRef
    37. Suzuki N, Yachiguchi K, Hayakawa K, Omori K, Takada K, Tabata JM, Kitamura K, Endo M, Wada S, Srivastav AK, Chowdhury VS, Oshima Y, Hattori A (2011b) Effects of inorganic mercury on osteoclasts and osteoblasts of the goldfish scales in vitro. J Fac Agr Kyushu Univ 56:47-1
    38. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504-508 CrossRef
    39. Thamamongood TA, Furuya R, Fukuba S, Nakamura M, Suzuki N, Hattori A (2012) Expression of osteoblastic and osteoclastic genes during spontaneous regeneration and autotransplantation of goldfish scale: a new tool to study intramembranous bone regeneration. Bone 50:1240-249 CrossRef
    40. Yoshikubo H, Suzuki N, Takemura K, Hoso M, Yashima S, Iwamuro S, Takagi Y, Tabata MJ, Hattori A (2005) Osteoblastic activity and estrogenic response in the regenerating scale of goldfish, a good model of osteogenesis. Life Sci 76:2699-709 CrossRef
    41. Zylberberg L, Bonaventure J, Cohen-Solal L, Hartmann DJ, Bereiter-Hahn J (1992) Organization and characterization of fibrillar collagens in fish scales in situ and in vitro. J Cell Sci 103:273-85
  • 作者单位:Koji Yachiguchi (1)
    Noriko Matsumoto (1)
    Yuki Haga (2)
    Motoharu Suzuki (2)
    Chisato Matsumura (2)
    Masahiro Tsurukawa (2)
    Toshihiro Okuno (2)
    Takeshi Nakano (2)
    Kimi Kawabe (3)
    Kei-ichiro Kitamura (4)
    Akira Toriba (3)
    Kazuichi Hayakawa (3)
    Vishwajit S. Chowdhury (5)
    Masato Endo (6)
    Atsuhiko Chiba (7)
    Toshio Sekiguchi (1)
    Masaki Nakano (8)
    Yoshiaki Tabuchi (9)
    Takashi Kondo (10)
    Shigehito Wada (11)
    Hiroyuki Mishima (12)
    Atsuhiko Hattori (8)
    Nobuo Suzuki (1)

    1. Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Housu-gun, Ishikawa, 927-0553, Japan
    2. Hyogo Prefectural Institute of Environmental Sciences, Kobe, Hyogo, 654-0037, Japan
    3. Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
    4. Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kodatsuno, Ishikawa, 920-0942, Japan
    5. International Education Center, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
    6. Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, 108-8477, Japan
    7. Department of Materials and Life Sciences, Sophia University, Tokyo, 102-8554, Japan
    8. Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba, 272-0827, Japan
    9. Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Sugitani, Toyama, 930-0194, Japan
    10. Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, 930-0194, Japan
    11. Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Toyama, Sugitani, Toyama, 930-0194, Japan
    12. Department of Human Life Sciences, Kochi Gakuen College, Kochi, 780-0955, Japan
  • ISSN:1614-7499
文摘
To analyze the effect of polychlorinated biphenyl (PCB) 118 on fish bone metabolism, we examined osteoclastic and osteoblastic activities, as well as plasma calcium levels, in the scales of PCB (118)-injected goldfish. In addition, effect of PCB (118) on osteoclasts and osteoblasts was investigated in vitro. Immature goldfish, in which the endogenous effects of sex steroids are negligible, were used. PCB (118) was solubilized in dimethyl sulfoxide at a concentration of 10?ppm. At 1 and 2?days after PCB (118) injection (100?ng/g body weight), both osteoclastic and osteoblastic activities, and plasma calcium levels were measured. In an in vitro study, then, both osteoclastic and osteoblastic activities as well as each marker mRNA expression were examined. At 2?days, scale osteoclastic activity in PCB (118)-injected goldfish increased significantly, while osteoblastic activity did not change significantly. Corresponding to osteoclastic activity, plasma calcium levels increased significantly at 2?days after PCB (118) administration. Osteoclastic activation also occurred in the marker enzyme activities and mRNA expressions in vitro. Thus, we conclude that PCB (118) disrupts bone metabolism in goldfish both in vivo and in vitro experiments.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700