Exome sequencing of senescence-accelerated mice (SAM) reveals deleterious mutations in degenerative disease-causing genes
详细信息    查看全文
  • 作者:Kumpei Tanisawa (1) (2)
    Eri Mikami (1) (2) (3)
    Noriyuki Fuku (1)
    Yoko Honda (1)
    Shuji Honda (1)
    Ikuro Ohsawa (4)
    Masafumi Ito (5)
    Shogo Endo (6)
    Kunio Ihara (7)
    Kinji Ohno (8)
    Yuki Kishimoto (9)
    Akihito Ishigami (9)
    Naoki Maruyama (9)
    Motoji Sawabe (10)
    Hiroyoshi Iseki (11)
    Yasushi Okazaki (11)
    Sanae Hasegawa-Ishii (12)
    Shiro Takei (12)
    Atsuyoshi Shimada (12)
    Masanori Hosokawa (12)
    Masayuki Mori (13)
    Keiichi Higuchi (13)
    Toshio Takeda (14)
    Mitsuru Higuchi (15)
    Masashi Tanaka (1)
  • 关键词:Exome sequencing ; Senescence ; accelerated mice ; Aging
  • 刊名:BMC Genomics
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:14
  • 期:1
  • 全文大小:777KB
  • 参考文献:1. Johnson FB, Sinclair DA, Guarente L: Molecular biology of aging. / Cell 1999,96(2):291鈥?02. CrossRef
    2. Higuchi K: Genetic characterization of senescence-accelerated mouse (SAM). / Exp Gerontol 1997,32(1鈥?):129鈥?38. CrossRef
    3. Takeda T, Hosokawa M, Higuchi K: Senescence-accelerated mouse (SAM): a novel murine model of senescence. / Exp Gerontol 1997,32(1鈥?):105鈥?09. CrossRef
    4. Takeda T, Matsushita T, Kurozumi M, Takemura K, Higuchi K, Hosokawa M: Pathobiology of the senescence-accelerated mouse (SAM). / Exp Gerontol 1997,32(1鈥?):117鈥?27. CrossRef
    5. Kitado H, Higuchi K, Takeda T: Molecular genetic characterization of the senescence-accelerated mouse (SAM) strains. / J Gerontol 1994,49(6):B247-B254. CrossRef
    6. Takeda T, Hosokawa M, Higuchi K: Senescence-accelerated mouse (SAM). A novel murine model of aging. In / The SAM model of senescence. Edited by: Takeda T. Amsterdam: Elsevier B. V; 1994:15.
    7. Carter TA, Greenhall JA, Yoshida S, Fuchs S, Helton R, Swaroop A, Lockhart DJ, Barlow C: Mechanisms of aging in senescence-accelerated mice. / Genome Biol 2005,6(6):R48. CrossRef
    8. Higuchi K, Kitagawa K, Naiki H, Hanada K, Hosokawa M, Takeda T: Polymorphism of apolipoprotein A-II (apoA-II) among inbred strains of mice. Relationship between the molecular type of apoA-II and mouse senile amyloidosis. / Biochem J 1991,279(Pt 2):427鈥?33.
    9. Nakanishi R, Shimizu M, Mori M, Akiyama H, Okudaira S, Otsuki B, Hashimoto M, Higuchi K, Hosokawa M, Tsuboyama T, Nakamura T: Secreted frizzled-related protein 4 is a negative regulator of peak BMD in SAMP6 mice. / J Bone Miner Res 2006,21(11):1713鈥?721. CrossRef
    10. Xia C, Higuchi K, Shimizu M, Matsushita T, Kogishi K, Wang J, Chiba T, Festing MF, Hosokawa M: Genetic typing of the senescence-accelerated mouse (SAM) strains with microsatellite markers. / Mamm Genome 1999,10(3):235鈥?38. CrossRef
    11. Naiki H, Higuchi K, Shimada A, Takeda T, Nakakuki K: Genetic analysis of murine senile amyloidosis. / Lab Invest 1993,68(3):332鈥?37.
    12. Wang J, Wang W, Li R, Li Y, Tian G, Goodman L, Fan W, Zhang J, Li J, Guo Y, Feng B, Li H, Lu Y, Fang X, Liang H, Du Z, Li D, Zhao Y, Hu Y, Yang Z, Zheng H, Hellmann I, Inouye M, Pool J, Yi X, Zhao J, Duan J, Zhou Y, Qin J, Ma L: The diploid genome sequence of an Asian individual. / Nature 2008,456(7218):60鈥?5. CrossRef
    13. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W, Chen YJ, Makhijani V, Roth GT, Gomes X, Tartaro K, Niazi F, Turcotte CL, Irzyk GP, Lupski JR, Chinault C, Song XZ, Liu Y, Yuan Y, Nazareth L, Qin X, Muzny DM, Margulies M, Weinstock GM, Gibbs RA, Rothberg JM: The complete genome of an individual by massively parallel DNA sequencing. / Nature 2008,452(7189):872鈥?76. CrossRef
    14. Li Y, Vinckenbosch N, Tian G, Huerta-Sanchez E, Jiang T, Jiang H, Albrechtsen A, Andersen G, Cao H, Korneliussen T, Grarup N, Guo Y, Hellman I, Jin X, Li Q, Liu J, Liu X, Sparso T, Tang M, Wu H, Wu R, Yu C, Zheng H, Astrup A, Bolund L, Holmkvist J, Jorgensen T, Kristiansen K, Schmitz O, Schwartz TW: Resequencing of 200 human exomes identifies an excess of low-frequency non-synonymous coding variants. / Nat Genet 2010,42(11):969鈥?72. CrossRef
    15. Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, Shaffer T, Wong M, Bhattacharjee A, Eichler EE, Bamshad M, Nickerson DA, Shendure J: Targeted capture and massively parallel sequencing of 12 human exomes. / Nature 2009,461(7261):272鈥?76. CrossRef
    16. Bilguvar K, Ozturk AK, Louvi A, Kwan KY, Choi M, Tatli B, Yalnizoglu D, Tuysuz B, Caglayan AO, Gokben S, Kaymakcalan H, Barak T, Bakircioglu M, Yasuno K, Ho W, Sanders S, Zhu Y, Yilmaz S, Dincer A, Johnson MH, Bronen RA, Kocer N, Per H, Mane S, Pamir MN, Yalcinkaya C, Kumandas S, Topcu M, Ozmen M, Sestan N: Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. / Nature 2010,467(7312):207鈥?10. CrossRef
    17. Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, Huff CD, Shannon PT, Jabs EW, Nickerson DA, Shendure J, Bamshad MJ: Exome sequencing identifies the cause of a mendelian disorder. / Nat Genet 2010,42(1):30鈥?5. CrossRef
    18. Feng BJ, Tavtigian SV, Southey MC, Goldgar DE: Design considerations for massively parallel sequencing studies of complex human disease. / PLoS One 2011,6(8):e23221. CrossRef
    19. Jakovcevski M, Schachner M, Morellini F: Individual variability in the stress response of C57BL/6J male mice correlates with trait anxiety. / Genes Brain Behav 2008,7(2):235鈥?43. CrossRef
    20. Watkins-Chow DE, Pavan WJ: Genomic copy number and expression variation within the C57BL/6J inbred mouse strain. / Genome Res 2008,18(1):60鈥?6. CrossRef
    21. Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B, Heger A, Agam A, Slater G, Goodson M, Furlotte NA, Eskin E, Nellaker C, Whitley H, Cleak J, Janowitz D, Hernandez-Pliego P, Edwards A, Belgard TG, Oliver PL, McIntyre RE, Bhomra A, Nicod J, Gan X, Yuan W, van der Weyden L, Steward CA, Bala S, Stalker J, Mott R: Mouse genomic variation and its effect on phenotypes and gene regulation. / Nature 2011,477(7364):289鈥?94. CrossRef
    22. de Magalhaes JP, Toussaint O: GenAge: a genomic and proteomic network map of human ageing. / FEBS Lett 2004,571(1鈥?):243鈥?47. CrossRef
    23. Mori M, Toyokuni S, Kondo S, Kasai H, Naiki H, Toichi E, Hosokawa M, Higuchi K: Spontaneous loss-of-function mutations of the 8-oxoguanine DNA glycosylase gene in mice and exploration of the possible implication of the gene in senescence. / Free Radic Biol Med 2001,30(10):1130鈥?136. CrossRef
    24. Nash HM, Bruner SD, Scharer OD, Kawate T, Addona TA, Spooner E, Lane WS, Verdine GL: Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily. / Curr Biol 1996,6(8):968鈥?80. CrossRef
    25. Thomas D, Scot AD, Barbey R, Padula M, Boiteux S: Inactivation of OGG1 increases the incidence of G . C-->T . A transversions in Saccharomyces cerevisiae: evidence for endogenous oxidative damage to DNA in eukaryotic cells. / Mol Gen Genet 1997,254(2):171鈥?78. CrossRef
    26. Hendrich B, Hardeland U, Ng HH, Jiricny J, Bird A: The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. / Nature 1999,401(6750):301鈥?04. CrossRef
    27. Makino S, Kunimoto K, Muraoka Y, Mizushima Y, Katagiri K, Tochino Y: Breeding of a non-obese, diabetic strain of mice. / Jikken Dobutsu 1980,29(1):1鈥?3.
    28. Threadgill DW, Miller DR, Churchill GA, de Villena FP: The collaborative cross: a recombinant inbred mouse population for the systems genetic era. / ILAR J 2011,52(1):24鈥?1. CrossRef
    29. Takeda T: Senescence-accelerated mouse (SAM): a biogerontological resource in aging research. / Neurobiol Aging 1999,20(2):105鈥?10. CrossRef
    30. Gillespie CS, Sherman DL, Blair GE, Brophy PJ: Periaxin, a novel protein of myelinating Schwann cells with a possible role in axonal ensheathment. / Neuron 1994,12(3):497鈥?08. CrossRef
    31. Guilbot A, Williams A, Ravise N, Verny C, Brice A, Sherman DL, Brophy PJ, LeGuern E, Delague V, Bareil C, Megarbane A, Claustres M: A mutation in periaxin is responsible for CMT4F, an autosomal recessive form of Charcot-Marie-Tooth disease. / Hum Mol Genet 2001,10(4):415鈥?21. CrossRef
    32. Otagiri T, Sugai K, Kijima K, Arai H, Sawaishi Y, Shimohata M, Hayasaka K: Periaxin mutation in Japanese patients with Charcot-Marie-Tooth disease. / J Hum Genet 2006,51(7):625鈥?28. CrossRef
    33. Gillespie CS, Sherman DL, Fleetwood-Walker SM, Cottrell DF, Tait S, Garry EM, Wallace VC, Ure J, Griffiths IR, Smith A, Brophy PJ: Peripheral demyelination and neuropathic pain behavior in periaxin-deficient mice. / Neuron 2000,26(2):523鈥?31. CrossRef
    34. Dingwall C, Sharnick SV, Laskey RA: A polypeptide domain that specifies migration of nucleoplasmin into the nucleus. / Cell 1982,30(2):449鈥?58. CrossRef
    35. Sherman DL, Brophy PJ: A tripartite nuclear localization signal in the PDZ-domain protein L-periaxin. / J Biol Chem 2000,275(7):4537鈥?540. CrossRef
    36. Zhou Q, Ruiz-Lozano P, Martone ME, Chen J: Cypher, a striated muscle-restricted PDZ and LIM domain-containing protein, binds to alpha-actinin-2 and protein kinase C. / J Biol Chem 1999,274(28):19807鈥?9813. CrossRef
    37. Selcen D, Engel AG: Mutations in ZASP define a novel form of muscular dystrophy in humans. / Ann Neurol 2005,57(2):269鈥?76. CrossRef
    38. Vatta M, Mohapatra B, Jimenez S, Sanchez X, Faulkner G, Perles Z, Sinagra G, Lin JH, Vu TM, Zhou Q, Bowles KR, Di Lenarda A, Schimmenti L, Fox M, Chrisco MA, Murphy RT, McKenna W, Elliott P, Bowles NE, Chen J, Valle G, Towbin JA: Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. / J Am Coll Cardiol 2003,42(11):2014鈥?027. CrossRef
    39. Yamashita Y, Matsuura T, Shinmi J, Amakusa Y, Masuda A, Ito M, Kinoshita M, Furuya H, Abe K, Ibi T, Sahashi K, Ohno K: Four parameters increase the sensitivity and specificity of the exon array analysis and disclose 25 novel aberrantly spliced exons in myotonic dystrophy. / J Hum Genet 2012,57(6):368鈥?74. CrossRef
    40. Paul DL, Ebihara L, Takemoto LJ, Swenson KI, Goodenough DA: Connexin46, a novel lens gap junction protein, induces voltage-gated currents in nonjunctional plasma membrane of Xenopus oocytes. / J Cell Biol 1991,115(4):1077鈥?089. CrossRef
    41. Bennett TM, Mackay DS, Knopf HL, Shiels A: A novel missense mutation in the gene for gap-junction protein alpha3 (GJA3) associated with autosomal dominant "nuclear punctate" cataracts linked to chromosome 13q. / Mol Vis 2004, 10:376鈥?82.
    42. Bennett TM, Shiels A: A recurrent missense mutation in GJA3 associated with autosomal dominant cataract linked to chromosome 13q. / Mol Vis 2011, 17:2255鈥?262.
    43. Matsushita M, Tsuboyama T, Kasai R, Okumura H, Yamamuro T, Higuchi K, Kohno A, Yonezu T, Utani A, Umezawa M, Takeda T: Age-related changes in bone mass in the senescence-accelerated mouse (SAM). SAM-R/3 and SAM-P/6 as new murine models for senile osteoporosis. / Am J Pathol 1986,125(2):276鈥?83.
    44. Tanaka S, Shiokawa K, Miyaishi O: Effects of housing and nutritions condition on the reproductions of SAMR1, SAMP6 and SAMP8 at NILS aging farm. In / The Senescence-Accelerated Mouse (SAM): An Animal Model of Senescence. Edited by: Nomura Y. Amsterdam: Elsevier B. V; 2004:167鈥?73.
    45. Ishimi Y, Miyaura C, Jin CH, Akatsu T, Abe E, Nakamura Y, Yamaguchi A, Yoshiki S, Matsuda T, Hirano T: IL-6 is produced by osteoblasts and induces bone resorption. / J Immunol 1990,145(10):3297鈥?303.
    46. Takahashi N, Udagawa N, Suda T: A new member of tumor necrosis factor ligand family, ODF/OPGL/TRANCE/RANKL, regulates osteoclast differentiation and function. / Biochem Biophys Res Commun 1999,256(3):449鈥?55. CrossRef
    47. Thomson BM, Mundy GR, Chambers TJ: Tumor necrosis factors alpha and beta induce osteoblastic cells to stimulate osteoclastic bone resorption. / J Immunol 1987,138(3):775鈥?79.
    48. Thomson BM, Saklatvala J, Chambers TJ: Osteoblasts mediate interleukin 1 stimulation of bone resorption by rat osteoclasts. / J Exp Med 1986,164(1):104鈥?12. CrossRef
    49. Korycka J, Lach A, Heger E, Boguslawska DM, Wolny M, Toporkiewicz M, Augoff K, Korzeniewski J, Sikorski AF: Human DHHC proteins: a spotlight on the hidden player of palmitoylation. / Eur J Cell Biol 2011,91(2):107鈥?17. CrossRef
    50. Saleem AN, Chen YH, Baek HJ, Hsiao YW, Huang HW, Kao HJ, Liu KM, Shen LF, Song IW, Tu CP, Wu JY, Kikuchi T, Justice MJ, Yen JJ, Chen YT: Mice with alopecia, osteoporosis, and systemic amyloidosis due to mutation in Zdhhc13, a gene coding for palmitoyl acyltransferase. / PLoS Genet 2010,6(6):e1000985. CrossRef
    51. Leong WF, Zhou T, Lim GL, Li B: Protein palmitoylation regulates osteoblast differentiation through BMP-induced osterix expression. / PLoS One 2009,4(1):e4135. CrossRef
    52. Miyamoto M, Kiyota Y, Nishiyama M, Nagaoka A: Senescence-accelerated mouse (SAM): age-related reduced anxiety-like behavior in the SAM-P/8 strain. / Physiol Behav 1992,51(5):979鈥?85. CrossRef
    53. Miyamoto M, Kiyota Y, Yamazaki N, Nagaoka A, Matsuo T, Nagawa Y, Takeda T: Age-related changes in learning and memory in the senescence-accelerated mouse (SAM). / Physiol Behav 1986,38(3):399鈥?06. CrossRef
    54. Xie Q, Lin T, Zhang Y, Zheng J, Bonanno JA: Molecular cloning and characterization of a human AIF-like gene with ability to induce apoptosis. / J Biol Chem 2005,280(20):19673鈥?9681. CrossRef
    55. Carswell EA, Wanebo HJ, Old LJ, Boyse EA: Immunogenic properties of reticulum cell sarcomas of SJL/J mice. / J Natl Cancer Inst 1970,44(6):1281鈥?288.
    56. Holmes MC, Burnet FM: The Natural History of Autoimmune Disease in Nzb Mice. A Comparison with the Pattern of Human Autoimmune Manifestations. / Ann Intern Med 1963, 59:265鈥?76. CrossRef
    57. Frontera WR, Hughes VA, Fielding RA, Fiatarone MA, Evans WJ, Roubenoff R: Aging of skeletal muscle: a 12-yr longitudinal study. / J Appl Physiol 2000,88(4):1321鈥?326.
    58. Verdu E, Ceballos D, Vilches JJ, Navarro X: Influence of aging on peripheral nerve function and regeneration. / J Peripher Nerv Syst 2000,5(4):191鈥?08. CrossRef
    59. Hosokawa M, Takeshita S, Higuchi K, Shimizu K, Irino M, Toda K, Honma A, Matsumura A, Yasuhira K, Takeda T: Cataract and other ophthalmic lesions in senescence accelerated mouse (SAM). Morphology and incidence of senescence associated ophthalmic changes in mice. / Exp Eye Res 1984,38(2):105鈥?14. CrossRef
    60. Nishimoto H, Uga S, Miyata M, Ishikawa S, Yamashita K: Morphological study of the cataractous lens of the senescence accelerated mouse. / Graefes Arch Clin Exp Ophthalmol 1993,231(12):722鈥?28. CrossRef
    61. Mangashetti LS, Khapli SM, Wani MR: IL-4 inhibits bone-resorbing activity of mature osteoclasts by affecting NF-kappa B and Ca2+ signaling. / J Immunol 2005,175(2):917鈥?25.
    62. Sands BE, Kaplan GG: The role of TNFalpha in ulcerative colitis. / J Clin Pharmacol 2007,47(8):930鈥?41. CrossRef
    63. Fujibayashi Y, Yamamoto S, Waki A, Konishi J, Yonekura Y: Increased mitochondrial DNA deletion in the brain of SAMP8, a mouse model for spontaneous oxidative stress brain. / Neurosci Lett 1998,254(2):109鈥?12. CrossRef
    64. Cheung EC, Joza N, Steenaart NA, McClellan KA, Neuspiel M, McNamara S, MacLaurin JG, Rippstein P, Park DS, Shore GC, McBride HM, Penninger JM, Slack RS: Dissociating the dual roles of apoptosis-inducing factor in maintaining mitochondrial structure and apoptosis. / EMBO J 2006,25(17):4061鈥?073. CrossRef
    65. Takeda T: Effects of environment on life span and pathobiological phenotypes in senescence-accelerated mice. In / The Senescence-Accelerated Mouse (SAM): An Animal Model of Senescence. Edited by: Nomura Y. Amsterdam: Elsevier B. V; 2004:3鈥?2.
    66. de Magalhaes JP, Cabral JA, Magalhaes D: The influence of genes on the aging process of mice: a statistical assessment of the genetics of aging. / Genetics 2005,169(1):265鈥?74. CrossRef
    67. Chiba Y, Yamashita Y, Ueno M, Fujisawa H, Hirayoshi K, Hohmura K, Tomimoto H, Akiguchi I, Satoh M, Shimada A, Hosokawa M: Cultured murine dermal fibroblast-like cells from senescence-accelerated mice as in vitro models for higher oxidative stress due to mitochondrial alterations. / J Gerontol A Biol Sci Med Sci 2005,60(9):1087鈥?098. CrossRef
    68. Hosokawa M, Ashida Y, Nishikawa T, Takeda T: Accelerated aging of dermal fibroblast-like cells from senescence-accelerated mouse (SAM). 1. Acceleration of population aging in vitro. / Mech Ageing Dev 1994,74(1鈥?):65鈥?7. CrossRef
    69. Lecka-Czernik B, Moerman EJ, Shmookler Reis RJ, Lipschitz DA: Cellular and molecular biomarkers indicate precocious in vitro senescence in fibroblasts from SAMP6 mice. Evidence supporting a murine model of premature senescence and osteopenia. / J Gerontol A Biol Sci Med Sci 1997,52(6):B331. CrossRef
    70. Fairfield H, Gilbert GJ, Barter M, Corrigan RR, Curtain M, Ding Y, D'Ascenzo M, Gerhardt DJ, He C, Huang W, Richmond T, Rowe L, Probst FJ, Bergstrom DE, Murray SA, Bult C, Richardson J, Kile BT, Gut I, Hager J, Sigurdsson S, Mauceli E, Di Palma F, Lindblad-Toh K, Cunningham ML, Cox TC, Justice MJ, Spector MS, Lowe SW, Albert T: Mutation discovery in mice by whole exome sequencing. / Genome Biol 2011,12(9):R86. CrossRef
    71. Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, Epstein CB, Frietze S, Harrow J, Kaul R, Khatun J, Lajoie BR, Landt SG, Lee BK, Pauli F, Rosenbloom KR, Sabo P, Safi A, Sanyal A, Shoresh N, Simon JM, Song L, Trinklein ND, Altshuler RC, Birney E, Brown JB, Cheng C, Djebali S, Dong X, Ernst J: An integrated encyclopedia of DNA elements in the human genome. / Nature 2012,489(7414):57鈥?4. CrossRef
    72. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, Maner S, Massa H, Walker M, Chi M, Navin N, Lucito R, Healy J, Hicks J, Ye K, Reiner A, Gilliam TC, Trask B, Patterson N, Zetterberg A, Wigler M: Large-scale copy number polymorphism in the human genome. / Science 2004,305(5683):525鈥?28. CrossRef
    73. Gray VE, Kukurba KR, Kumar S: Performance of computational tools in evaluating the functional impact of laboratory-induced amino acid mutations. / Bioinformatics 2012,28(16):2093鈥?096. CrossRef
    74. Ng PC, Henikoff S: SIFT: Predicting amino acid changes that affect protein function. / Nucleic Acids Res 2003,31(13):3812鈥?814. CrossRef
    75. Ramensky V, Bork P, Sunyaev S: Human non-synonymous SNPs: server and survey. / Nucleic Acids Res 2002,30(17):3894鈥?900. CrossRef
    76. Zhang B, Kirov S, Snoddy J: WebGestalt: an integrated system for exploring gene sets in various biological contexts. / Nucleic Acids Res 2005,33(Web Server issue):W741-W748. CrossRef
    77. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. / Mol Syst Biol 2011, 7:539. CrossRef
    78. Hosokawa T, Hosono M, Hanada K, Aoike A, Kawai K, Takeda T: Immune responses in newly developed short-lived SAM mice. Selectively impaired T-helper cell activity in in vitro antibody response. / Immunology 1987,62(3):425鈥?29.
    79. Hosokawa T, Hosono M, Higuchi K, Aoike A, Kawai K, Takeda T: Immune responses in newly developed short-lived SAM mice. I. Age-associated early decline in immune activities of cultured spleen cells. / Immunology 1987,62(3):419鈥?23.
    80. Kurozumi M, Matsushita T, Hosokawa M, Takeda T: Age-related changes in lung structure and function in the senescence-accelerated mouse (SAM): SAM-P/1 as a new murine model of senile hyperinflation of lung. / Am J Respir Crit Care Med 1994,149(3 Pt 1):776鈥?82. CrossRef
    81. Ogawa H: Renal lesions of the senescence accelerated mouse (SAM), with special emphasis on senility. / Nihon Jinzo Gakkai Shi 1988,30(9):1063鈥?065.
    82. Takeshita S, Hosokawa M, Irino M, Higuchi K, Shimizu K, Yasuhira K, Takeda T: Spontaneous age-associated amyloidosis in senescence-accelerated mouse (SAM). / Mech Ageing Dev 1982,20(1):13鈥?3. CrossRef
    83. Stanton H, Rogerson FM, East CJ, Golub SB, Lawlor KE, Meeker CT, Little CB, Last K, Farmer PJ, Campbell IK, Fourie AM, Fosang AJ: ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. / Nature 2005,434(7033):648鈥?52. CrossRef
    84. Malfait AM, Liu RQ, Ijiri K, Komiya S, Tortorella MD: Inhibition of ADAM-TS4 and ADAM-TS5 prevents aggrecan degradation in osteoarthritic cartilage. / J Biol Chem 2002,277(25):22201鈥?2208. CrossRef
    85. Li J, Anemaet W, Diaz MA, Buchanan S, Tortorella M, Malfait AM, Mikecz K, Sandy JD, Plaas A: Knockout of ADAMTS5 does not eliminate cartilage aggrecanase activity but abrogates joint fibrosis and promotes cartilage aggrecan deposition in murine osteoarthritis models. / J Orthop Res 2011,29(4):516鈥?22. CrossRef
    86. Chen WH, Hosokawa M, Tsuboyama T, Ono T, Iizuka T, Takeda T: Age-related changes in the temporomandibular joint of the senescence accelerated mouse. SAM-P/3 as a new murine model of degenerative joint disease. / Am J Pathol 1989,135(2):379鈥?85.
    87. Kozyrev SV, Abelson AK, Wojcik J, Zaghlool A, Linga Reddy MV, Sanchez E, Gunnarsson I, Svenungsson E, Sturfelt G, Jonsen A, Truedsson L, Pons-Estel BA, Witte T, D'Alfonso S, Barizzone N, Danieli MG, Gutierrez C, Suarez A, Junker P, Laustrup H, Gonzalez-Escribano MF, Martin J, Abderrahim H, Alarcon-Riquelme ME: Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. / Nat Genet 2008,40(2):211鈥?16. CrossRef
    88. Orozco G, Abelson AK, Gonzalez-Gay MA, Balsa A, Pascual-Salcedo D, Garcia A, Fernandez-Gutierrez B, Petersson I, Pons-Estel B, Eimon A, Paira S, Scherbarth HR, Alarcon-Riquelme M, Martin J: Study of functional variants of the BANK1 gene in rheumatoid arthritis. / Arthritis Rheum 2009,60(2):372鈥?79. CrossRef
    89. Shimada A, Ohta A, Akiguchi I, Takeda T: Inbred SAM-P/10 as a mouse model of spontaneous, inherited brain atrophy. / J Neuropathol Exp Neurol 1992,51(4):440鈥?50. CrossRef
    90. Shimada A, Ohta A, Akiguchi I, Takeda T: Age-related deterioration in conditional avoidance task in the SAM-P/10 mouse, an animal model of spontaneous brain atrophy. / Brain Res 1993,608(2):266鈥?72. CrossRef
    91. Chang MS, Lowe DG, Lewis M, Hellmiss R, Chen E, Goeddel DV: Differential activation by atrial and brain natriuretic peptides of two different receptor guanylate cyclases. / Nature 1989,341(6237):68鈥?2. CrossRef
    92. de Bold AJ: Atrial natriuretic factor: a hormone produced by the heart. / Science 1985,230(4727):767鈥?70. CrossRef
    93. Sudoh T, Kangawa K, Minamino N, Matsuo H: A new natriuretic peptide in porcine brain. / Nature 1988,332(6159):78鈥?1. CrossRef
    94. Simonnet G, Allard M, Legendre P, Gabrion J, Vincent JD: Characteristics and specific localization of receptors for atrial natriuretic peptides at non-neuronal cells in cultured mouse spinal cord cells. / Neuroscience 1989,29(1):189鈥?99. CrossRef
    95. Teoh R, Kum W, Cockram CS, Young JD, Nicholls MG: Mouse astrocytes possess specific ANP receptors which are linked to cGMP production. / Clin Exp Pharmacol Physiol 1989,16(4):323鈥?27. CrossRef
    96. Hasegawa-Ishii S, Takei S, Inaba M, Umegaki H, Chiba Y, Furukawa A, Kawamura N, Hosokawa M, Shimada A: Defects in cytokine-mediated neuroprotective glial responses to excitotoxic hippocampal injury in senescence-accelerated mouse. / Brain Behav Immun 2011,25(1):83鈥?00. CrossRef
    97. Zhu BH, Ueno M, Matsushita T, Fujisawa H, Seriu N, Nishikawa T, Nishimura Y, Hosokawa M: Effects of aging and blood pressure on the structure of the thoracic aorta in SAM mice: a model of age-associated degenerative vascular changes. / Exp Gerontol 2001,36(1):111鈥?24. CrossRef
    98. Beyer EC, Paul DL, Goodenough DA: Connexin43: a protein from rat heart homologous to a gap junction protein from liver. / J Cell Biol 1987,105(6 Pt1):2621鈥?629. CrossRef
    99. Beyer EC, Kistler J, Paul DL, Goodenough DA: Antisera directed against connexin43 peptides react with a 43-kD protein localized to gap junctions in myocardium and other tissues. / J Cell Biol 1989,108(2):595鈥?05. CrossRef
    100. Britz-Cunningham SH, Shah MM, Zuppan CW, Fletcher WH: Mutations of the Connexin43 gap-junction gene in patients with heart malformations and defects of laterality. / N Engl J Med 1995,332(20):1323鈥?329. CrossRef
    101. Dasgupta C, Martinez AM, Zuppan CW, Shah MM, Bailey LL, Fletcher WH: Identification of connexin43 (alpha1) gap junction gene mutations in patients with hypoplastic left heart syndrome by denaturing gradient gel electrophoresis (DGGE). / Mutat Res 2001,479(1鈥?):173鈥?86.
    102. Blackburn JP, Connat JL, Severs NJ, Green CR: Connexin43 gap junction levels during development of the thoracic aorta are temporally correlated with elastic laminae deposition and increased blood pressure. / Cell Biol Int 1997,21(2):87鈥?7. CrossRef
    103. Little TL, Beyer EC, Duling BR: Connexin 43 and connexin 40 gap junctional proteins are present in arteriolar smooth muscle and endothelium in vivo. / Am J Physiol 1995,268(2 Pt 2):H729-H739.
    104. Liao Y, Regan CP, Manabe I, Owens GK, Day KH, Damon DN, Duling BR: Smooth muscle-targeted knockout of connexin43 enhances neointimal formation in response to vascular injury. / Arterioscler Thromb Vasc Biol 2007,27(5):1037鈥?042. CrossRef
  • 作者单位:Kumpei Tanisawa (1) (2)
    Eri Mikami (1) (2) (3)
    Noriyuki Fuku (1)
    Yoko Honda (1)
    Shuji Honda (1)
    Ikuro Ohsawa (4)
    Masafumi Ito (5)
    Shogo Endo (6)
    Kunio Ihara (7)
    Kinji Ohno (8)
    Yuki Kishimoto (9)
    Akihito Ishigami (9)
    Naoki Maruyama (9)
    Motoji Sawabe (10)
    Hiroyoshi Iseki (11)
    Yasushi Okazaki (11)
    Sanae Hasegawa-Ishii (12)
    Shiro Takei (12)
    Atsuyoshi Shimada (12)
    Masanori Hosokawa (12)
    Masayuki Mori (13)
    Keiichi Higuchi (13)
    Toshio Takeda (14)
    Mitsuru Higuchi (15)
    Masashi Tanaka (1)

    1. Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Tokyo, Itabashi, 173-0015, Japan
    2. Graduate School of Sport Sciences, Waseda University, Tokorozawa, 359-1192, Japan
    3. Japan Society for the Promotion of Science, Tokyo, 102-8472, Japan
    4. Department of Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
    5. Department of Molecular Gerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
    6. Aging Regulation Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
    7. Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
    8. Department of Neurogenetics and Bioinformatics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
    9. Department of Aging Regulation, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
    10. Department of Pathology and Bioresource Center for Geriatric Research, Tokyo Metropolitan Institute of Gerontology, Tokyo, 1730015, Japan
    11. Research Center for Genomic Medicine, Saitama Medical University, Hidaka, 350-1241, Japan
    12. Department of Pathology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, 480-0392, Japan
    13. Department of Aging Biology, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Matsumoto, 390-8621, Japan
    14. The Council for SAM Research, Kyoto, 604-8856, Japan
    15. Faculty of Sport Sciences, Waseda University, Tokorozawa, 359-1192, Japan
文摘
Background Senescence-accelerated mice (SAM) are a series of mouse strains originally derived from unexpected crosses between AKR/J and unknown mice, from which phenotypically distinct senescence-prone (SAMP) and -resistant (SAMR) inbred strains were subsequently established. Although SAMP strains have been widely used for aging research focusing on their short life spans and various age-related phenotypes, such as immune dysfunction, osteoporosis, and brain atrophy, the responsible gene mutations have not yet been fully elucidated. Results To identify mutations specific to SAMP strains, we performed whole exome sequencing of 6 SAMP and 3 SAMR strains. This analysis revealed 32,019 to 38,925 single-nucleotide variants in the coding region of each SAM strain. We detected Ogg1 p.R304W and Mbd4 p.D129N deleterious mutations in all 6 of the SAMP strains but not in the SAMR or AKR/J strains. Moreover, we extracted 31 SAMP-specific novel deleterious mutations. In all SAMP strains except SAMP8, we detected a p.R473W missense mutation in the Ldb3 gene, which has been associated with myofibrillar myopathy. In 3 SAMP strains (SAMP3, SAMP10, and SAMP11), we identified a p.R167C missense mutation in the Prx gene, in which mutations causing hereditary motor and sensory neuropathy (Dejerine-Sottas syndrome) have been identified. In SAMP6 we detected a p.S540fs frame-shift mutation in the Il4ra gene, a mutation potentially causative of ulcerative colitis and osteoporosis. Conclusions Our data indicate that different combinations of mutations in disease-causing genes may be responsible for the various phenotypes of SAMP strains.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700