Crossbreeding of a metallic color carnation and diversification of the peculiar coloration by ion-beam irradiation
详细信息    查看全文
  • 作者:Masachika Okamura (1)
    Masayoshi Nakayama (2)
    Naoyuki Umemoto (1)
    Emilio A. Cano (3)
    Yoshihiro Hase (4)
    Yuzo Nishizaki (5)
    Nobuhiro Sasaki (5)
    Yoshihiro Ozeki (5)
  • 关键词:Carnation ; Acylation ; Glycosylation ; Ion ; beam irradiation ; Anthocyanic vacuolar inclusions ; Metallic color
  • 刊名:Euphytica
  • 出版年:2013
  • 出版时间:May 2013
  • 年:2013
  • 卷:191
  • 期:1
  • 页码:45-56
  • 全文大小:628KB
  • 参考文献:1. Abe Y, Tera M, Sasaki N, Okamura M, Umemoto N, Momose M, Kawahara N, Kamakura H, Goda Y, Nagasawa K, Ozeki Y (2008) Detection of 1- / O-malylglucose: pelargonidin 3- / O-glucose-6鈥测€? / O-malyltransferase activity in carnation ( / Dianthus aryophyllus). Biochem Biophys Res Comm 373:473鈥?77. doi:10.1016/j.bbrc.2008.04.153 CrossRef
    2. Bloor SJ (1998) A macrocyclic anthocyanin from red/mauve carnation flowers. Phytochemistry 49:225鈥?28. doi:org/10.1016/S0031-9422(97)01051-0 CrossRef
    3. Itoh Y, Higeta D, Suzuki A, Yoshida H, Ozeki Y (2002) Excision of transposable elements from the chalcone isomerase and dihydroflavonol 4-reductase genes may contribute to the variegation of the yellow-flowered carnation ( / Dianthus caryophyllus). Plant Cell Physiol 43:578鈥?85. doi:10.1093/pcp/pcf065 CrossRef
    4. Markham KR, Gould KS, Winefield CS, Mitchell KA, Bloor SJ, Boase MR (2000) Anthocyanin vacuolar inclusions鈥攖heir nature and significance in flower colouration. Phytochemistry 55:327鈥?36. doi:org/10.1016/S0031-9422(00)00246-6 CrossRef
    5. Matsuba Y, Sasaki N, Tera M, Okamura M, Abe Y, Okamoto E, Nakamura H, Funabashi H, Takatsu M, Saito M, Matsuoka H, Nagasawa K, Ozeki Y (2010) A novel glucosylation reaction on anthocyanis catalyzed by acyl-glucose dependent glucosyltransferase in the petals of carnation and delphinium. Plant Cell 22:3374鈥?389. doi:10.1105/tpc.110.077487 CrossRef
    6. Morita Y, Hoshino A, Kikuchi Y, Okuhara H, Ono E, Tanaka Y, Fukui Y, Saito N, Nitasaka E, Noguchi H, Iida S (2005) Japanese morning glory / dusky mutants displaying reddish-brown or purplish-gray flowers are deficient in a novel glycosylation enzyme for anthocyanin biosynthesis, UDP-glucose:anthocyanidin 3- / O-glucoside-2鈥测€? / O-glucosyltransferase, due to 4-bp insertions in the gene. Plant J 42:353鈥?63. doi:10.1111/j.1365-313X.2005.02383.x CrossRef
    7. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473鈥?97 CrossRef
    8. Nakayama M, Koshioka M, Yoshida H, Kan Y, Fukui Y, Koike A, Yamaguchi M (2000) Cyclic malyl anthocyanins in / Dianthus caryophyllus. Phytochemistry 55:937鈥?39. doi:10.1016/S0031-9422(00)00263-6 CrossRef
    9. Neelakandan AK, Wang K (2012) Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Rep 31:597鈥?20. doi:10.1007/s00299-011-1202-z CrossRef
    10. Nishizaki Y, Matsuba Y, Okamoto E, Okamura M, Ozeki Y, Sasaki N (2011) Structure of the acyl-glucose-dependent anthocyanin 5- / O-glucosyltransferase gene in carnations and its disruption by transposable elements in some varieties. Mol Genet Genomics 286:383鈥?94. doi:10.1007/s00438-011-0655-7 CrossRef
    11. Okamura M, Yasuno N, Ohtsuka M, Tanaka A, Shikazono N, Hase Y (2003) Wide variety of flower-color and -shape mutants regenerated from leaf cultures irradiated with ion beams. Nucl Instrum Methods Phys Res B 206:574鈥?78. doi:org/10.1016/S0168-583X(03)00835-8 CrossRef
    12. Okamura M, Umemoto N, Onishi N (2012) Breeding glittering carnations by an efficient mutagenesis system. Plant Biotechnol 29:209鈥?14. doi:10.5511/plantbiotechnology.12.0104a CrossRef
    13. Tanaka Y, Ohmiya A (2008) Seeing is believing: engineering anthocyanin and carotenoid biosynthetic pathways. Curr Opin Biotechnol 19:190鈥?97. doi:10.1016/j.copbio.2008.02.015 CrossRef
    14. Tanaka A, Shikazono N, Hase Y (2010) Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants. J Radiat Res 51:223鈥?33. doi:10.1269/jrr.09143 CrossRef
    15. Umemoto N, Abe Y, Cano EA, Okamura M, Sasaki N, Yoshida S, Ozeki Y (2009) Carnation serine carboxypeptidase-like acyltransferase is important for anthocyanin malyltransferase activity and formation of anthocyanic vacuolar inclusions. 5th International Workshop on Anthocyanins 2009 in Japan, Nagoya, 15鈥?8 September 2009, p 115
    16. Yoshida K, Mori M, Kondo T (2009) Blue flower color development by anthocyanins: from chemical structure to cell physiology. Nat Prod Rep 26:884鈥?15. doi:10.1039/B800165K CrossRef
    17. Zhang H, Wang L, Deroles S, Bennett R, Davies K (2006) New insight into the structure and formation of anthocyanic vacuolar inclusions in flower petals. BMC Plant Biol 6:29. doi:10.1186/1471-2229-6-29 CrossRef
  • 作者单位:Masachika Okamura (1)
    Masayoshi Nakayama (2)
    Naoyuki Umemoto (1)
    Emilio A. Cano (3)
    Yoshihiro Hase (4)
    Yuzo Nishizaki (5)
    Nobuhiro Sasaki (5)
    Yoshihiro Ozeki (5)

    1. Central Laboratories for Key Technologies, Kirin Company, Ltd., Fukuura 1-13-5, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
    2. Institute of Floricultural Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8519, Japan
    3. Barberet & Blanc, S. A., Camino Viejo, 205, 30.890 Puerto Lumbreras, Murcia, Spain
    4. Quantum Beam Science Directorate, Japan Atomic Energy Agency, Takasaki, Gunma, 370-1292, Japan
    5. Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo, 184-8588, Japan
  • ISSN:1573-5060
文摘
In general, carnations (Dianthus caryophyllus) have each of four kinds of anthocyanins acylated by malic acid. A few carnation cultivars are known to display a peculiar dusky color supposedly caused by anthocyanic vacuolar inclusions (AVIs). The hereditary pattern suggests that the peculiar color is controlled by a single recessive factor tightly linked with existence of AVIs containing non-acylated anthocyanins. To diversify the peculiar color carnation, we produced a bluish purple line displaying a highly novel metallic appearance by crossbreeding. By subjecting the line to ion-beam irradiation, we generated metallic reddish purple, metallic crimson and metallic red lines. The major anthocyanin of the metallic bluish purple and reddish purple lines was pelargonidin 3,5-diglucoside, whereas that of the metallic crimson and red lines was pelargonidin 3-glucoside. All four metallic lines did not have transcripts for anthocyanin malyltransferase. Metallic crimson and red lines did not express the acyl-glucose-dependent anthocyanin 5-O-glucosyltransferase gene. In contrast to the dusky color types, metallic lines have highly condensed AVIs and water-clear vacuolar sap in the petal adaxial epidermal cells. Differences in the number of AVIs on the abaxial side were observed within mutants containing the same anthocyanin, thereby affecting their shade and hue. We demonstrated that (1) a factor generating the AVIs is inactivated anthocyanin malyltransferase gene, (2) AVIs in water-clear vacuolar sap in the adaxial epidermal cells generate the novel metallic appearance, and (3) ion beam breeding is a useful tool for increasing metallic colors by changing anthocyanin structure and the level of AVIs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700